一次独立なベクトルからの基底の生成の証明  
 →
戻る 
(舞台設定)
K (例:有理数をすべてあつめた集合Q実数をすべて集めた集合R、複素数をすべてあつめた集合C)  
KnK上のn次元数ベクトル空間 
+K上のn次元数ベクトル空間において定義されているベクトルの加法 
スカラーに続けてベクトルを並べて書いたもの:K上のn次元数ベクトル空間Knにおいて定義されているスカラー乗法 
v1, v2, , vnn個の「Kからつくったn次元数ベクトル」。
       具体的に書くと、
i=1,2,, nにたいして、vi1, vi2, , vinKとして、vi=( vi1, vi2, , vin )   
       したがって、
v1, v2, , vn Kn
       なお、個数
lが有限個であることに注意。  
a1, a2, , an スカラーa1, a2, , an K  

(本題)
K上のn次元数ベクトル空間においては、一次独立な「Kからつくったn次元数ベクトル」に、適当な単位ベクトルを補充することによって基底をつくることができる。 
つまり、
v1, v2, , vlKn一次独立ならば
ある
単位ベクトルei(1), ei(2) ,, ei(nl) が存在して、    
v1, v2, , vn, ei(1), ei(2) ,, ei(nl)は、Kn基底となる。  。
(補足説明:ベクトルの個数と上記定理の関連) 
Kからつくったn次元数ベクトルv1, v2, , vl の個数lで、場合分けをする。
[case1] l > n  
 「
Kからつくったn次元数ベクトルv1, v2, , vl の個数lが、nより多いならば
  
v1, v2, , vlは、つねに一次従属であって、一次独立であることはありえない。() 
  だから、この場合に、上記定理の仮定「
v1, v2, , vlKn一次独立ならば」が成り立つことはない。
  このケースでは、上記定理に出番はない。 
[case2] l = n  
 「
Kからつくったn次元数ベクトルv1, v2, , vl の個数lnならば
  
v1, v2, , vlvn一次従属の場合もあれば一次独立の場合もありえる。 
  もし、ここで、上記定理の仮定が成り立ち、
v1, v2, , vlvn一次独立ならば、()    
  
v1, v2, , vlvnは、すでに、Kn基底である。() 
  だから、このケースでは、上記定理は自明なのであって、ありがた味がない。   
[case3] l < n  
 「
Kからつくったn次元数ベクトルv1, v2, , vl の個数lnより少ないならば
  
v1, v2, , vl一次従属の場合もあれば一次独立の場合もありえる。 
  もし、ここで、上記定理の仮定が成り立ち、
v1, v2, , vl一次独立だとしても
  
v1, v2, , vlは、Kn基底になりえない。   
  
一次独立n次元数ベクトルv1, v2, , vlが、基底の定義を満たすには、
  
v1, v2, , vl一次結合として、Kn属す任意のn次元数ベクトルを表すことができなければならないが、
  これは不可能である。
  
v1, v2, , vl一次結合としては表し得ない「Kからつくったn次元数ベクトル」があることは、
  次の点について考えてみると判然とする。
  |
Kn単位ベクトルは、いつでもn個ある。 
  |また、
Kn単位ベクトルは、いつでも一次独立である。()  
  |つまり、
Knには、一次独立n個のn次元数ベクトルが、単位ベクトルを実例として存在している。 
  |ところが、  
  |
l < nという設定下で、v1, v2, , vl一次結合n個つくると、 
  |この
n個の「v1, v2, , vl一次結合」は一次従属にしかならない。(
  |「
v1, v2, , vl一次結合」としてあらわしうる、一次独立なベクトルの個数は、l以下である。()   
  |したがって、 
  |
単位ベクトルを実例とする、一次独立n個のn次元数ベクトルを、「v1, v2, , vl一次結合」として表そうとしても、 
  |表せない
(nl)個のベクトルが存在することになる。   
  したがって、「
Kからつくったn次元数ベクトルv1, v2, , vl の個数lnより少ないケースにおいて、
  「
一次独立n次元数ベクトルに、適当な単位ベクトルを補充することによって基底をつくることができる」
  とする上記定理は、意義をもつ。 

戻る

(証明) [永田『理系のための線形代数の基礎』定理1.2.4(p.14);]
l < n
のケースについてのみ証明する。(説明)   
仮定:
v1, v2, , vlKn一次独立  …(仮定1)
   l < n    …(仮定2) 
Step1: v1, v2, , vl一次結合としては表し得ない単位ベクトルei(1)とおく。
Kn単位ベクトルe1, e2 ,, enは、一次独立n個のn次元数ベクトル。()…(1-1)  
(仮定2) l < nの下で、v1, v2, , vl一次結合n個つくると、 
 この
n個の「v1, v2, , vl一次結合」は一次従属にしかならない。()  
 「
v1, v2, , vl一次結合」としてあらわしうる、一次独立なベクトルの個数は、l以下である。()…(1-2)   
(1-1) (1-2)より、 
 
一次独立n個の単位ベクトルe1, e2 ,, enをすべて、「v1, v2, , vl一次結合」として表すことはできないことがわかる。 
 
n個の単位ベクトルe1, e2 ,, enのなかで、
 「
v1, v2, , vl一次結合」として表すことはできない単位ベクトルの一つを、
 
ei(1)とおくことにする。 …(1-3)    
Step2: v1, v2, , vl, ei(1)は一次独立。
a1v1+a2v2++alvl+aei(1)= ( a1, a2, , al ,a ) とおく。…(2-1) 
a0だとすると、aには乗法の逆元a−1が存在し、(2-1)を次のように変形してゆける。
  
a1v1+a2v2++alvl+aei(1)+{(a1v1+a2v2++alvl)}=(a1v1+a2v2++alvl)+    
                  ∵両辺に
(a1v1+a2v2++alvl)の逆ベクトルを加えた。 
  
aei(1)=(a1v1+a2v2++alvl)+  数ベクトルの加法の性質v+(v)=   
  
aei(1)=(a1v1+a2v2++alvl)     数ベクトルの加法の性質v+v  
 
 aei(1)=(−1)(a1v1+a2v2++alvl   逆ベクトルの定義   
  
aei(1)= (1)a1v1+(1)a2v2++(1)alvl  数ベクトルのスカラー乗法の性質  
  a−1aei(1)=a−1 (1)a1v1+a−1(1)a2v2++a−1(1)alvl 
     
a0だとすると、aには、乗法の逆元a−1が存在するので、これを両辺にかけた。  
 
 
a−1aei(1)= (1)a−1a1v1+(1)a−1a2v2++(1)a−1alvl 
         ∵体における乗法の可換則  
  
1ei(1)= (1)a−1a1v1+(1)a−1a2v2++(1)a−1alvl  ∵体における自らの乗法の逆元との積  
  
ei(1)= (1)a−1a1v1+(1)a−1a2v2++(1)a−1alvl  ∵数ベクトルのスカラー乗法の性質1v=v  
 すると、
a0だとすると、ei(1)= (1)a−1a1v1+(1)a−1a2v2++(1)a−1alvl と表せて、
  
(1)a−1a1, (1)a−1a2,, (1)a−1al   
 となるから、  
 
ei(1)は、「v1, v2, , vl一次結合」として表せることになって、(1-3)の設定と矛盾。
 したがって、
(2-1)において、a=0でなければならない。  …(2-2) 
(2-2)(2-1)に代入して、
  
a1v1+a2v2++alvl= ( a1, a2, , al )    
 すると、 
(仮定1) v1, v2, , vlKn一次独立より、   
  
a1=a2==al =0 でなければならない。 …(2-3)  
(2-1)(2-2)(2-3)をあわせて考えると、
 
a1v1+a2v2++alvl+aei(1)= ( a1, a2, , al ,a ) とおくと、
 
a1=a2==al =a=0 でなければならないことになる。
 このことは、
v1, v2, , vl, ei(1) Kn一次独立であることの定義を満たす。…(2-4)   
Step3:  
l+1=nならば、 
 
(2-4)一次独立であると示されたv1, v2, , vl, ei(1) は、Kn基底となる。()  
l+1<nならば、  
 
n個の単位ベクトルe1, e2 ,, enのなかで、
 「
v1, v2, , vl一次結合」として表すことはできないものの一つを、 
 
ei(2)とおく(ただし、ei(2)ei(1)以外)。 
 すると、
step2と同様にして、v1, v2, , vl, ei(1), ei(2)一次独立であると示される。   
 
l+2=nならば、v1, v2, , vl, ei(1), ei(2)は、Kn基底となる。()    
 
l+2<nならば、上記の手続きを繰り返す。
 
n個のベクトルv1, v2, , vn, ei(1), ei(2) ,, ei(nl)一次独立であると示された時点で、
 
v1, v2, , vn, ei(1), ei(2) ,, ei(nl)は、Kn基底となる。() 

戻る