| ・定理 : |
|
( | 1 + |
|
) |
|
= e |
| ・定理: |
|
( | 1 + |
|
) |
|
= e |
| |
an = |
|
{ | nC k | ( |
|
) |
|
} |
| |
=nC0 |
( |
|
) |
|
+ |
|
{ | nC k | ( |
|
) |
|
} | |
| |
= 1 + |
|
( |
|
|
|
) |
∵combinationの定義 |
| |
= 1 + |
|
( |
|
|
|
) |
| |
= 1 + |
|
( |
|
|
|
) |
| |
= 1 + |
|
( |
|
|
|
|
|
|
|
… |
|
) |
| |
= 1 + |
|
{ |
|
( 1 − |
|
) ( 1 − |
|
) ( 1 − |
|
) … ( 1 − |
|
) |
} |
| |
= 1 + |
|
( 1 − |
|
) + |
|
( 1 − |
|
) + |
|
( 1 − |
|
) ( 1 − |
|
) + … + |
{ |
|
( 1 − |
|
) ( 1 − |
|
) … ( 1 − |
|
) | } | …(1) | |
| |
a1 = 1 + |
|
( 1 − |
|
) = 2 | |
| |
a2 = 1 + |
|
( 1 − |
|
) + |
|
( 1 − |
|
) = 2 + |
|
|
|
| |
a3 = 1 + |
|
( 1 − |
|
) + |
|
( 1 − |
|
) + |
|
( 1 − |
|
) ( 1 − |
|
) = 2 + |
|
|
|
+ |
|
|
|
|
| |
a4 = 1 + |
|
( 1 − |
|
) + |
|
( 1 − |
|
) + |
|
( 1 − |
|
) ( 1 − |
|
) + |
|
( 1 − |
|
) ( 1 − |
|
) ( 1 − |
|
) | |
| |
= 2 + |
|
|
+ |
|
|
|
+ |
|
|
|
|
|
|
|
|
|
| |
an | = 1 + |
|
( 1 − |
|
) + |
|
( 1 − |
|
) + |
|
( 1 − |
|
) ( 1 − |
|
) + … + |
{ |
|
( 1 − |
|
) ( 1 − |
|
) … ( 1 − |
|
) | } | |
| |
n =2 で、 |
|
( 1 − |
|
) |
| |
n =3 で、 |
|
( 1 − |
|
) |
| |
n =4 で、 |
|
( 1 − |
|
) |
| |
n =n で、 |
|
( 1 − |
|
) |
| |
n =3 で、 |
|
( 1 − |
|
) ( 1 − |
|
) |
| |
n =4 で、 |
|
( 1 − |
|
) ( 1 − |
|
) |
| |
n =n で、 |
|
( 1 − |
|
) ( 1 − |
|
) |
| an | ≦ 1 + |
|
+ |
|
+ |
|
+ … + |
|
∵@で、1/k! と掛け合わせる相手は0より大きく1以下。 |
| ≦ 1 + |
|
+ |
|
+ |
|
+ … + |
|
∵ k!=k・(k−1)・(k−2)・…・3・2>2・2・2…・2・2=2k-1 |
| = 1 + |
|
∵ 等比数列の和 |
| = 1 + 2 |
{ |
|
} | = 1 + 2 − 2 |
|
| = 3 − |
|
<3 ∵ n=1で3−1、n=2で3−1/2、…、n→∞で3−0 |
|
→ トピック一覧 : e → 総目次 |
| 数列 an = | ( | 1 + |
|
) |
|
は収束するが (→この数列が収束することの証明)、 |
|
( | 1 + |
|
) |
|
|
|
|
= 1 + |
|
+ |
|
+ |
|
+ … + |
|
+ … | |
|
→ トピック一覧 : e → 総目次 |
|
( | 1 + |
|
) |
|
= e |
| ( | 1 + |
|
) |
|
< ( | 1 + |
|
) |
|
< ( | 1 + |
|
) |
|
…(3) |
| |
|
( | 1 + |
|
) |
|
= |
|
{ ( | 1 + |
|
) |
|
( | 1 + |
|
) |
|
} |
| |
= |
|
( | 1 + |
|
) |
|
・ |
|
( | 1 + |
|
) |
|
∵定理:数列の積の極限値 |
| |
= |
|
( | 1 + |
|
) |
|
・ |
|
∵定理:数列の商の極限値 |
| |
= |
|
( | 1 + |
|
) |
|
・ |
|
|
∵定理:数列の和の極限値 |
| |
|
( | 1 + |
|
) |
|
= |
|
{ ( | 1 + |
|
) |
|
( | 1 + |
|
) | } |
| |
= |
|
( | 1 + |
|
) |
|
・ |
|
( | 1 + |
|
) | ∵定理:数列の積の極限値 |
| = |
|
( | 1 + |
|
) |
|
・ ( 1 + |
|
|
) |
|
∵定理:数列の和の極限値 |
| e < ( | 1 + |
|
) |
|
< e |
| よって、 |
|
( | 1 + |
|
) |
|
= e |
|
→ トピック一覧 : e → 総目次 |
|
( | 1 + |
|
) |
|
= e |
| ( | 1 + |
|
) |
|
=( | 1 − |
|
) |
|
=( |
|
) |
|
=( |
|
) |
|
=( |
|
) |
|
=( | 1 + |
|
) |
|
=( | 1 + |
|
) |
|
( | 1 + |
|
) | …(2) |
|
( | 1 + |
|
) |
|
|
| = |
|
{ ( | 1 + |
|
) |
|
( | 1 + |
|
) } |
|
∵(1)(2) |
| = |
|
( | 1 + |
|
) |
|
・ |
|
( | 1 + |
|
) |
|
∵定理:数列の積の極限値 |
| = |
|
( | 1 + |
|
) |
|
・ ( 1 + |
|
|
) |
|
∵定理:数列の和の極限値 |
|
→ トピック一覧 : e → 総目次 |