R上の区間塊の長さを定義する集合関数が有限加法的測度であることの証明 

  →
戻る 

[準備]  
・舞台設定 
 
R     :実数の全体の集合。すなわち、R{ x| −∞ < x < +∞ } 
 
集合系()E: R上の区間塊として考えられ得るものすべてを集めてきた集合系()
            ※
区間塊Eは、R部分集合だから、ER部分集合系()となっている。
Ψ
(I)    : 直線の長さを定義する集合関数Ψ
       すなわち、
       
(i) I=(a, b] (ただし−∞< a< b<+∞)ならば、 Ψ(I) =ba   
       
(ii) I=φならば、 Ψ(φ) = 0  
       
(iii)  I=(−∞, b], (a , ), (−∞, )(ただし−∞< a,b<+∞)ならば、Ψ(I) =+∞
・集合関数μの定義 
 
Eに属す、すべてのEは、区間塊であるから、 
       
type 1: 左半開区間(a, b]={ x | a<xb } (ただし−∞< a< b<+∞),
       type 2: (−∞, b]={ x | xb } (ただし−∞< b<+∞)
       
type 3: (a , )={ x | a<x } (ただし−∞< a <+∞)
       
type 4: (−∞, )=実数全体の集合R 
       
type 5: 空集合φ  
 の
5タイプの区間の有限個の直和として表す(=互いに素な有限個の上記5タイプの区間へ分割する)
 ことができる。  
 すなわち、
 
Eに属す、すべてのEには常に、
   
1以上の或る自然数nが存在して、
   
E= I1In (ただし、I1,,Inは、上記5タイプいずれかの区間)
 と表せる。   ※自然数
n1以上とわざわざことわったのは、E= I1というケースも当然ありうるという意味。
 そこで、
直線の長さを定義する集合関数Ψを用いて、 
  μ
(E)=Ψ(I1)Ψ(I2)Ψ(In) 
 と、関数μを定義する。 
 このμ
(E)は、きれぎれの直線E長さの和となる。
[本題] 
  
Rで定義された上記の実数値E-集合関数μは、E上の有限加法的測度である。
[証明]
 第1に、
性質2より、E有限加法族である。 
 第
2に、有限加法的測度の第1要件: 任意EEに対して、0≦μ(E)+∞、μ(φ)=0を満たしている。
  →なぜなら、
任意EEに対して、μ(E)直線の長さを定義する集合関数Ψの有限和。 
      集合関数
Ψは、常に0Ψ(I)+∞で、Ψ (I)=0となるのはI=φのケースのみであったから、
      その有限和であるμも、常に
0≦μ≦+∞で、μ(φ)=0
 第
3に、有限加法的測度の第2要件: 任意互いに素E1,E2 E に対して、μ(E1+E2)=μ(E1)+μ(E2)  
  →なぜなら、
任意互いに素E1,E2 Eに対して、両者は区間塊だから、
    
1以上の或る自然数n, m が存在して、
    
E1= I1+…+In 、 E2= In+1+…+I n+m 
      ただし、
I1,,I n+mは、下記5タイプいずれかの区間で、各々はすべて互いに素。 
        
type 1: 左半開区間(a, b]={ x | a<xb } (ただし−∞< a< b<+∞),
        type 2: (−∞, b]={ x | xb } (ただし−∞< b<+∞)
        
type 3: (a , )={ x | a<x } (ただし−∞< a <+∞)
        
type 4: (−∞, )=実数全体の集合R 
        
type 5: 空集合φ
    と表せて、…(1)
    μ()の定義より、
     μ
(E1)=Ψ(I1)+…+Ψ(In)、μ(E2)= Ψ(I n+1)+…+Ψ(I n+m)   …(2) 
    他方、
(1)より、E1+E2I1++In+In+1+I n+m と表せるから、μ()の定義より、
     μ
(E1+E2)= Ψ(I1)+…+Ψ(In)Ψ(I n+1)+…+Ψ(I n+m)     …(3) 
    
(2)(3)から、μ(E1+E2)=μ(E1)+μ(E2) =Ψ (I1)+…+Ψ (In)Ψ (I n+1)+…+Ψ (I n+m) 

  →
戻る