電波伝搬 (電波の伝わり方)
電波の伝わり方は周波数によって大きく異なり、様々な自然現象の影響も受けます。よって同じ周波数帯でも常に一定というわけではありません。プロの通信業務や放送局にとっては常に一定の伝搬が求められるので、自然現象による伝搬の変化は困ったことです。しかし、我々アマチュアは様々な伝搬や異常現象をむしろ楽しんで通信することができるのです。
ここでは基本的な電波伝搬を説明します。さらに詳しい用語や計算式に興味がある方は専門の書籍を参考にしてください。
電波伝搬の様式
1.地上波
 地上を伝搬する電波で、直接波、大地反射波、地表波の3つがあります。
直接波: 最も単純な伝搬経路で、送受信間が見通し距離の場合に光と同じように直進して伝わります。光の性質と似ているVHFやUHF以上の高い周波数にみられます。

大地反射波: 大地で反射して伝搬します。VHFやUHFで送受信間が見通し距離の場合は図のように直接波と大地反射波の両方が受信アンテナに到達し、位相差を生じてお互いが干渉します。両者の位相が同相になると受信地点の電界強度が高くなり、逆相になると低下します。

地表波(グランドウエーブ): 大地の湾曲に沿って伝搬します。HF帯以下の低い(波長が長い)周波数にみられます。MF(中波)のラジオ放送が遠くまで届くのは地表波を利用したものです。アマチュア無線では地表波はあまり利用されません。

 上記以外にも回析や反射などの現象によって、見通し外や異なる方向に伝搬することがあります。
山岳回折波:光と同じように、山岳による電波の回折(回り込み)現象で、山の向こうの山陰(見通し外)に伝搬します。VHFやUHF帯以上の高い周波数に見られます。

山岳反射波: 山岳に反射して伝搬します。VHFやUHF帯以上の高い周波数に見られます。山以外でも大きなビルなどでも同じ現象が起こります。アマチュア無線ではよく利用されるテクニックで、ビームアンテナを使用すると効率的です。アマチュアの世界では反射させる山岳によって、富士山反射、丹沢反射のように呼びます。

2.電離層反射波
地球の上空にある電離層に反射して見通し距離外の遠方に伝搬します。上空波(スカイウェーブ)とも呼ばれます。周波数が低いほど電離層で反射しやすくなります。通常、電離層で反射するのはHF帯(30MHz)以下の低い周波数です。電離層で反射された電波は遠くの大地に到達し、そこの大地でも反射して上空に向かって進み再び電離層で反射します。この電離層と大地の間で反射を繰り返して数千kmから数万kmと交信できます。主に海外とのDX通信に利用されます。電離層を通過したり反射するときに減衰します。

3、対流圏波
VHFやUHFなどの高い(波長が短い)周波数に見られる伝搬で、対流圏(地上約15kmまで)を通過する際に、気温、気圧、湿度などの気象条件の影響により伝搬が変化したり散乱するものです。。
対流圏では通常でも電波は直進しないで、若干下方(地面方向)に曲がりながら伝搬します。そのため実際には直接波の計算上の直線距離よりも遠方まで到達します。
さらに対流圏では雨や風などの気象変化が常に起こっています。それにより大気の屈折率は一定ではありません。対流圏で起こる様々な気象条件によって電波が散乱して伝わるので、対流圏散乱波ともいい、まとめてトロッポとも呼ばれます。それに加えて時刻や地理的条件などで屈折率の垂直分布が不規則になることがあります。それらの要因で温度・湿度が通常とは逆に、上空に行くほど高くなることがあります。それが逆転層と呼ばれるもので、そこを電波が通過すると複雑な伝わり方をします。逆転層が激しくなると、超屈折という現象を起こし、上下に反射を繰り返しながら遠方まで到達します。それがラジオダクトと呼ばれる現象です。ラジオダクトによる伝搬は主にUHF(430MHz帯)以上の高い周波数で発生します。

電離層

電離層は太陽の紫外線などの影響で大気が電離して発生したイオン層で、地上から約60kmから400kmのあたりに電子密度の高い部分が複数の層に分かれて現れます。難しいことはあまり考えないで、電離層は電波を反射させる鏡のようなものと思えばよいでしょう。下からD層、E層、F層と呼ばれます。さらにF層はF1層とF2層があります。アマチュア無線では主にF層の反射を利用します。

●各層の電子密度は一定ではなく、様々な条件で変化します。
 #1日の変化: 昼間に電子密度が高くなり、夜間にはD層とF1層は消滅し、E層も観測できないくらい弱くなります。
 #季節変化: 夏に電子密度が高くなり、冬にはD層とF1層は非常に弱くなるか消滅します。
 #太陽活動による変化: 11年周期の黒点数の増加によって電子密度が高くなります。ハムのあいだではサイクルと呼んでいます。現在はサイクル23(2000年ピーク)が終了し、最衰期(2006年)を折り返した時期で、コンディションはよくありません。次のサイクル24のピークは2011年頃と予想されています。



D層: 地上から約60kmから80kmの高さに昼間に発生し、夜間には消滅します。電子密度が低いので、反射するのは数十kHz以下のVLF(超長波)とLF(長波)の低い周波数のみで、他は反射されることはなく、通過する際に減衰させてしまいます。そのため吸収層とか減衰層とも呼ばれます。D層を通過する際の減衰は周波数が低いほど大きくなります

E層: 地上から約100kmから130km付近に発生する。電子密度はD層より数十倍高いが、夜間には観測できないくらい弱くなる。LF(長波)の他にMF(中波)の放送波やHFの低い周波数が反射する。アマチュア無線では1.9MHz帯や3.5MHz帯が反射する。E層を通過する際の減衰はD層と同様に周波数が低いほと大きくなる。

Es層(スポラディックE層): 略してEスポとも呼ばれ、E層付近に電子密度の高い層が突発的に発生する。発生原因は正確には解明されていないが、特に春から夏期の日中に発生することが多い。地域的には日本および東南アジア近辺が最も発生しやすい。
 Eスポにより、通常はすべての層を突き抜けてしまうVHFの電波も反射させてしまう。そのため隣接する国(日本の場合は韓国や中国)の放送が混信してくる。日本の放送局で特に影響を受けるのがVHF帯の下の方の1ch〜3ch(NHKテレビ)である。Eスポが発生するとNHKでは「只今気象条件により受信障害が発生しています」という旨のテロップを出します。強力なEスポだと、144MHz帯までも反射することがあります。
 プロの放送局にとっては困った現象であるが、アマチュア無線では普段はできない遠距離との交信が可能となり、Eスポの発生は大歓迎である。28MHz帯と50MHz帯が最もEスポの恩恵を受けやすい

F層: 地上から200km〜400km付近にあり、電子密度はE層より数十から数百倍高いのでHF帯(短波)を効率よく反射する。反射する際の減衰は周波数が高くなるほど大きくなる。
 夏期の昼間にF層の下にもう一つの層が現れ、それを正規のF層と区別する為にF1層と呼び、正規のF層をF2層と呼んでいる。F1層は夜間及び冬期には消滅(合併)する。アマチュア無線のDX通信ではこのF層の反射が最も重要になる。通常、F層で反射するのは28MHz帯までだが、11年周期の太陽黒点数の上昇ピーク時には50MHz帯までも反射する。

電離層伝搬における用語・諸現象
第一種減衰: 電波が電離層を通過するときに受ける減衰です。短波帯の場合、D層とE層を通過するときの減衰です。各層の電子密度が高いほど減衰は大きくなります。通過する周波数が低いほど減衰が大きくなります。
第二種減衰: 電波が電離層で反射するときに受ける減衰です。短波帯の場合はF層で反射するときに受ける減衰です。周波数が高いほど減衰が大きくなります。第一種減衰よりは減衰は小さい。

臨界周波数: 電波を電離層に垂直に打ち上げたときに反射する限界(最高)の周波数です。D層を突き抜けても、その上のE層やF層で反射されることもあるので、臨界周波数は各層ごとに表されます。通常の臨界周波数はE層で3MHz、F層で8MHzくらいですが、太陽の黒点数が上昇するとさらに高くなります。臨界周波数は電離層に直角に入射した場合の数値であり、電離層の入射角が浅くなるほど反射する周波数は高くなります。

MUF(最高使用周波数): 特定の2地点間において、電離層反射波で通信できる最高の周波数です。電離層に対して電波が斜め(浅い角度)で入射すると臨界周波数よりも高い周波数でも反射します。その入射角度が浅ければ浅いほど高い周波数でも反射しやすくなります。それは池に石を投げるのと同じ理屈です。石を上から水面に対して深い角度で投げれば石は水中に沈みますが、横手投げで浅い角度で投げると水面上を何度もバウンドして進むのと同じです。特定の2局間においては、臨界周波数がわかれば電離層の高さと入射角度、2局間の距離によって使用できる最高の周波数が計算できます。その値をMUF(Maximum Usable Frequency)といいます。

LUF (最低使用周波数): 特定の2地点間において、電離層反射波で通信できる最低の周波数です。HFの通信の多くはF層の反射を利用します。既に述べたようにD層とE層を通過するときに減衰します。その減衰は周波数が低いほど大きくなりますので、特定の2局間で電離層反射波による通信には使用周波数の下限があるということです。その下限周波数のことをLUF(Lowest Usable Frequency)といいます。LUFは送信出力やアンテナ性能により変わります。

FOT(最適使用周波数): MUFとLUFの間で、通信に最も適した周波数のことをFOT(Frequency Optimum Transmission)といいます。MUFの85%の周波数が最適とされています。

スキップゾーン(不感地帯): 地表波が届く地点と電離層反射波が最初に地上に到達する地点(跳躍距離)の間には何れの電波も到達しない地域が存在します。そこをスキップゾーンといいます。電離層の入射角度が浅ければ浅いほど反射した電波が最初に地上に到達する地点は遠くなります。それに対して地表波が届くのはせいぜい100Kmとか200kmです。よって入射角度が浅いほどスキップゾーンが広くなります。

フェーディング: 受信地点で電波の強さが数分の1秒から数分程度の周期で変動する現象で、原因によりいくつかに分類されます。

 #干渉性フェーディング:発射地点から二つ以上の異なる経路で受信点に到達した電波が干渉することにより発生する。異なる経路によって到達の時間差が生じるためである。電離層反射波が異なる経路により到達した場合、また電離層反射波と地上波の両方が到達した場合などに発生する。
 #吸収性フェーディング: 電離層による伝搬過程で受ける減衰(第一種減衰および第二種減衰)が時間とともに変動するために起こる。比較的周期が長い。
 #選択性フェーディング:電離層反射波が周波数により異なる減衰を受けることによる。AMでは片側の側波帯が減衰量が異なると了解度が低下する。
 #跳躍性フェーディング: 跳躍距離(電離層反射波が地上に到達する地点)付近で、電離層の変化により、今まで反射していた電波が突き抜けたり、逆に突き抜けていた電波が反射したりすることにより起こる。
 #偏波性フェーディング: 電離層で反射する際に偏波面が楕円形になり、それが時間とともに回転するために電界強度が変化して発生する。

デリンジャー現象: 地球上で太陽に照らされている部分(昼間)に、HFの通信が突然不能となり、数分から数十分後に回復する現象で、突然消失現象とも呼ばれます。デリンジャーとはこの現象を発見した米国人の名前です。原因は太陽表面の爆発によって放出された多量の紫外線が地球表面に到達することで電離層(特にE層)の電子密度が高くなり、E層を通過するHFの電波がほとんど吸収されてしまうためです。E層を通過するHF帯にのみ発生し、周波数が低いほど影響が大きい。よってHFでも高い周波数である21MHz帯以上は影響を受けることは少ない。

磁気あらし: 地球全体で電界強度が徐々に低下し、数日間にわたり通信不能となる現象。原因は太陽から放出される荷電子粒子が地磁気を乱すことにより、電離層も乱れてしまうため。要するに磁気嵐により電離層嵐が発生して電離層が乱れて通信不能となるわけです。デリンジャー現象の発生は昼間のみですが、この磁気嵐は昼夜に関係なく発生します。

ロングパス: 通常の通信では最短距離(ショートパス)の電波が電界強度が強いのですが、昼と夜の電離層による減衰の違いで、長い距離の電波の方が強く受信できることがある。この現象をロングパスという。

エコー: 発射された電波が二つ以上の異なる経路で到達することにより、信号に時間差が発生し、遅れて到達した信号が「こだま」のように聞こえる現象。ショートパスとロングパスの両方が受信できるときによく発生する。



 バンドごとの伝搬パターン

それぞれのバンドの基本的な電波伝搬をおおまかに説明します。もちろん電離層の電子密度や様々な自然現象によって変わってきますし、理屈通りにならない不思議な伝搬もあります。様々な現象を味わえるのもハムの楽しみですから、色々と実験・研究するとよいでしょう。なお、下図の電離層ではF1層は省略してF層(F2層)としてあります。
7MHz帯の伝搬

7MHz帯(40mバンド)はHFのなかで最も人気があるバンドで、一日中にぎやかです。7MHzはHFでは低い周波数ですので電離層(F層)でよく反射します。電離層では周波数が低いほど反射しやすくなりますので、各層の電子密度が高くなる昼間は、上図のAのように電波を垂直に近い角度で打ち上げても反射します。そのため近県など比較的近距離からの電波も到達します。

昼間の問題は、電離層を通過するときの減衰は周波数が低いほど大きくなることです。7MHzは低い周波数ですので、D層とE層を通過するときに吸収され大きく減衰します。そのため電離層と大地で何度も反射を繰り返すDX(遠距離)通信では減衰が激しく信号が弱くなるので、近距離の強い信号に隠れてほとんど聞き取れなくなります。これが昼間の国内バンドとなる理由です。

夜間になると、F層の電子密度が低くなるので、図のAのような深い入射角の電波はF層を突き抜けてしまい、Cのような浅い入射角の電波のみ反射します。入射角の浅い電波は必然的に最初に大地に到達する距離も遠くなりますので、近距離はスキップして聞こえなくなります。それに加えて夜間にはD層は消えE層も非常に弱くなりますので、昼間のようなD層とE層通過による激しい減衰はなくなります。これにより、夜間はDXバンドとなるわけです。
しかし、夜間はE層での減衰が少なくなるとはいえ、ある程度は減衰しますので、反射を繰り返し数万kmに及ぶ海外通信では、高性能のビームアンテナと大きな送信出力が必要となります。
 
 
21MHz帯の伝搬

21MHz帯(15mバンド)はアマチュアで利用可能なバンド幅が450kHzあり、7MHzに比べて混信も少ないので、HFの入門バンドとして人気があります。コンディションが良いときには盛んにDX通信が行われます。

21MHzはHFのなかでは高い方の周波数ですので、電離層で反射しにくくなります。上図の昼間のパターンのように、電離層の電子密度が高くなる昼間でさえ反射されるのはCのような浅い入射角の電波のみです。AやBのような深い入射角の電波は反射せず宇宙空間へ突き抜けてしまいます。浅い入射角の電波は遠くへ到達します。D層およびE層を通過するときの減衰は、21MHzは高い周波数ですので、気にするほどの減衰はありません。そのため、21MHz帯が昼間のDXが可能となるのです。また、Eスポを利用した通信も可能です。
 
夜間になると、F層も電子密度が低くなりますので、Cのような浅い入射角の電波でも反射されずに突き抜けてしまいます。そのため夜間はたいへん静かなバンドとなり、聞こえるのは近所からの地表波だけです。

21MHzのコンディションは太陽活動に大きく左右されます。11年周期の黒点数の上昇によりF層の電子密度が高くなると、21MHz帯も効率よく反射され、DXを含めたあらゆる交信の可能性が増えます。現在はサイクル23(2000年ピーク)が終了し、2006年の最衰期を折り返した時期で、コンディションとしては良くありません。次回サイクル24(2011年ピーク)が期待されます。

 
28MHz/50MHz帯の伝搬

28MHz帯(10mバンド)はHFではいちばん高い周波数ですので、VHFの50MHz帯(6mバンド)とよく似た伝搬をします。ここでは50MHz帯の伝搬パターンを中心に説明します。

通常は電離層を突き抜けてしまいます。よって普段は直接波による見通し距離の通信が基本です。
28MHz帯はHFで唯一FMが許可されています。50MHz帯はバンド幅が広いのでFM運用も盛んです。普段の運用者は少なく、見通し距離のFMモードでのんびり交信することができます。今でもAMモードによる通信が行われています。
休日には山頂などからの移動運用が盛んです。
50MHz帯は異常伝搬の恩恵を受けやすいので、様々な現象を利用したスリリングな通信を楽しむことができます。

Eスポ(スポラディックE層): Eスポなくして50MHz帯は語れないほど有名な現象です。 Eスポが発生すると状況が一変し、SSBもFMも大変にぎやかになります。Eスポは電子密度がF層よりも高くなり、通常は電離層を突き抜けてしまうVHF帯の電波も反射します。それにより、普段は交信できないDXの電波が強力に入ってきます。D層を通過するときの減衰は周波数が低くなるほど大きくなるので、高い周波数である28MHz帯と50MHz帯は減衰が少なく小出力でもEスポの恩恵を最も受けるわけです。
1回の反射での通信距離は400〜2000kmといわれていますが、電波の打ち上げ角度が低いと、近距離のEスポが利用できません。直接波による通信では高い位置のアンテナが有利ですが、近距離Eスポでは逆に高いアンテナは打ち上げ角が低くなり不利となります。
Eスポは突発的に発生するが、特に春から夏期の昼間に発生することが多い。12月と1月にも時々発生することがある。

F2層による伝搬: 太陽活動(黒点数の上昇)が盛んになると、特にF2層の電子密度が高くなり、28MHz帯が反射しやすくなるほか、最盛期には50MHz帯までもF層で反射することもあります。そうなると50MHz帯で地球の裏側との交信も可能となります。50MHz帯における超DX通信はF2層によるものが中心です。50MHzファンは11年周期の太陽黒点のサイクルを楽しみに待っているのです。太陽活動の最盛期でなくても、黒点数が50〜100程度あれば夏の昼間にワンホップの伝搬が期待できることもあります。

スキャッター(散乱)
 #Eスポによる散乱: Eスポが発生した時、正規のEスポ伝搬(アンテナを向けた方角)とは異なる方向からの信号が強力に受信できることがあります。これはEスポのバックスキャッターと呼ばれています。ただ、正規の方向からの局が多いので、バックスキャッターに気づかない場合があります。
 #F2層による散乱: F2層の電子密度が高い時に発生します。Eスポほど強くありませんが、F2層はE層よりもはるかに高度が高く、しかも遠い赤道付近で発生しやすいので、DX通信が期待できます。高度が高くて遠いうえに正規の反射ではなく散乱なので、日本のような面積の小さい国は、一度に全国が開けてしまうことも珍しくありません。
 #Ms メテオスキャッター(流星散乱): 流星が地上約100kmの大気圏に突入して燃える時に、周囲の大気がイオン化しプラズマ状態になります。その数秒間、Eスポのように電波を反射(散乱)する部分が現れます。数秒間とはいえ、次々に流星が発生する流星群だと、その分長い時間の通信が可能となります。特に1月の四分儀座、8月のペルセウス座、12月の双子座の3大流星群が期待できます。

赤道横断伝搬: F2層による伝搬の一種ですが、赤道付近の異常によるものを赤道横断伝搬(TEP)と呼んでいます。高さが400〜500kmと通常のF2層よりも高く、赤道を挟んだ南北間でMUF(最高使用周波数)よりも高い周波数が伝搬します。特に地球上の同一経度が強力なので、日本の場合はオーストラリアとの交信ができます。

トロッポ: トロッポとは一般的には対流圏での異常伝搬全般を指すようですが、50MHz帯では特有の現象を指すこともあります。異常伝搬の一つであるダクトは高い周波数で発生しやすいので、VHFとしては低い方の50MHz帯でのダクト現象は非常に稀です。しかし、波長が長い分、超屈折まで至らなくても、少し屈折するだけでUHFよりも遠くへ飛びます。実際には、ごく稀なダクトなのかダクトまでは至らない50MHz帯特有の屈折現象なのか判別しにくいので、50MHz帯ではこれらをトロッポと呼びます。


144MHz/430MHz帯の伝搬

144MHz帯(2mバンド)は入門バンドでもあり、多くの人が利用しています。430MHz帯(70cmバンド)も都市部を中心に盛んに利用されている。VHFやUHFは電離層を突き抜けてしまうので、直接波による見通し距離の通信が基本です。高い周波数の電波は光に似た特性を持ち直進性が鋭くなる一方で、光と同様に回析や反射という現象も起こります。
見通し距離ということは、見晴らしが良くアンテナの地上高が高くなるほど電波は遠くまで飛びます。山頂からだと小さい出力でも100km以上でも通信可能となります。一方でビルに囲まれた市街地ですと、数キロ程度としか交信できない場合もあります。要するに障害物には弱いのです。
またダクト現象で1000km以上の通信が可能となることもあります。

山岳回折: 電波の進行方向に山があって、相手局が山の陰に隠れて完全な見通し外であっても交信できる場合があります。それは山の先端で電波が回折(回り込み)する性質によるものです。山岳回折は50MHz帯以上のVHFやUHFで顕著になります。

山岳反射: 電波が大きな山に反射して伝搬します。相手局方向に直接アンテナを向けるよりも山岳反射を利用した方が良好に交信できる場合がよくあります。直進性が鋭くなるUHF帯の高い周波数になるほど反射しやすくなります。大きなビルなどでも同様の現象が起こります。

ダクト: 対流圏で大気の逆転層が発生すると、電波が屈折現象を起こし、電波が遠くまで到達します。屈折した電波が地面で再び反射して、その上下反射を繰り返すのが接地ダクト、空中にて上下反射を繰り返すのを離地ダクトといい、一般にラジオダクトと呼ばれます。ダクト現象はごく稀に50MHzでも発生することがありますが、430MHz以上の高い周波数で発生しやすい。

レピータ: 430MHz帯では、山の上やビルの屋上などに設置されたレピータ(中継局)を利用して、小出力のハンディ機でも山の向こうや見通し外の局と通信することができます。アップリンクとダウンリンクは異なる周波数にシフト(430MHz帯の場合、アップリンクが434MHz台、ダウンリンクが439MHz台)して利用します。レピータにアクセスするには88.5Hzのトーン信号が含まれていなければなりません。それらはレピータ対応の無線機を使用すればすべてPTT操作で自動的に行われます。レピータは他に29MHz帯・1200MHz帯・2400MHz帯などでも利用可能です。

宇宙無線通信: 144MHz及び430MHz帯以上の高い周波数の電波が電離層を突き抜ける性質を利用して宇宙無線通信にも利用されます。宇宙無線通信を行うには、免許状の通信事項に「宇宙無線通信を含む」という項目を申請しておかなければなりません。

 #衛星通信:人工衛星(サテライト)で中継する無線通信です。衛星の高度によって通信可能距離は異なります。仕組みはレピータと同じですが、干渉を避けるため送・受信は別のバンドで行います。例えば、上り(アップリンク)は144MHz帯で発射し、受信した衛星が430MHz帯に変換して下り(ダウンリンク)電波を送信します。アマチュア用の衛星は静止衛星ではないので追尾が必要です。また、衛星通信はリアルタイムで交信するアナログ通信とパケットで一旦情報を預かり電子メールのように地球上を運んでくれるデジタル通信があります。アナログの電波型式はSSB又はCWで、デジタルではFM(データ)を使用します。

 #EME(月面反射通信):月に向けて電波を発射し、月面を反射板として利用し、反射して地球に戻ってきた電波をキャッチする通信方法です。地球のほぼ裏側との通信が可能です。反射で著しく減衰し、地球と月の往復距離も遠いことから、非常に微弱な電波を的確にキャッチしなければならないので、高度な設備と知識・技術が必要です。仰角付きの高性能ビームアンテナと許可される最大の出力が必要です。なお、EMEは50MHz帯でも可能です。

★144MHz帯と430MHz帯の違い
 30年ほど前、まだ430が盛んではなかった頃は、430のような高い周波数は飛ばないだろうとの噂があったようです。無線局数が増えて144が混雑するようになり、やむなく430に移動した人々が意外と遠くへ飛ぶという実感を抱くようになり、現在のように144と同じような感覚で盛んに使用されるようになりました。波長からすると確かに144の方が遠くへ飛びやすいでしょう。しかし、430は波長が短い分、利得の高いアンテナが利用できるので結果的に144に劣らないくらい遠くへ飛びます。ただ、周波数が高くなるにつれて光に似た性質になり、直進性が鋭くなるので144よりも430の方が障害物に弱いという面があります。運用する地域(都市部か地方か)やロケーションによって適宜使い分けるのも良いでしょう。


 
 
teatime    通信距離は・・・

 どれくらい飛ぶかという通信距離についての質問をよく受けます。ある程度無線をやったことがあれば、一概に言えないし、様々な条件によって大きく異なるということはわかると思います。それが全くの素人に説明するのは難しいです。遊びに来た友人が部屋にある無線機を見て「これでどこと交信できるの?アメリカまで届く?」とかいう質問を受けるのはよくあることでしょう。そこで「アメリカともヨーロッパとも交信できるけど、隣の静岡県とは交信できません・・」なんて答えると「何で?」と意味不明に思われるでしょう。「スキップゾーンってのがありまして・・地表波と電離層反射波の・・・」とか専門用語で説明してもチンプンカンプンでしょう。だから適当に「世界中どこでも交信できるよ!」なんて言っておけばイイかもしれませんが、そうすると「じゃあやってみてよ!」なんて言われると困ってしまいますし。そこで、自然条件により、できる時とできない時がある・・というと、「そんな不便なもの使い物にならないじゃん」と思われるかもしれません。その不安定さが魅力でもあるのですが、ハム以外の人には理解できない感覚かもしれません。
 プロの業務通信や放送局は常に同じ通信が要求されます。特に業務連絡に使用するのなら安定した通話距離が重要です。しかし、我々ハムは趣味の世界ですから、様々な変化や異常伝搬に一喜一憂すればよいのです。偶然の出会いや思わぬ長距離通信を楽しめばよいのです。太陽活動による11年に一度の通信でも楽しみに待っていればよいのです。
 確実な連絡が必要ならば、携帯電話や電子メールを利用すればよいのです。最近はアマチュア無線でもインターネットと融合したデジタル通信も普及しつつあるようですが、やはりアマチュア無線はアナログ的なところに魅力があると思うのですが・・・。

 比較的安定しているのがVHFやUHFの見通し距離の通信です。通常は50km程度でしょうが、アンテナの性能が良いと100km圏内も楽に交信できます。ただロケーションとアンテナに大きく左右されるので、見通し距離といっても一概に何キロとは言えません。同じ5Wのハンディ機と付属アンテナでも、山頂からなら200kmと交信できますが、自宅の部屋の中からだと2〜3kmでも厳しいということになります。モービル局同士だとお互いが常に移動しているので、通信状態は激しく変化します。

 また、自分のロケーションやアンテナが悪くても、交信相手のロケーションや設備が優れていれば、遠くとの交信も可能です。そのように相手に助けられるということもよくあります。ですから、自分の環境・設備と相手の環境・設備で通信可能距離は大きく変わります。

 「ハンディ機だとどれくらい飛ぶか?」という質問もよく受けますが、ハンディ機とか固定機とかのトランシーバーの種類は通信距離とはほとんど関係ないのです。とにかくロケーションとアンテナ次第です。パワーは二の次です。ハンディ機を屋根の上に設置したアンテナと接続すれば、格段に効率の良い通信ができるようになります。
 無資格で使用できるトランシーバーにはパッケージに通話距離 **mとか表示されているものが多くありますが、あまり意味はないのです。特定小電力無線では 市街地 **m、郊外 **m、スキー場 **m のように分けて表示されているものもあるようです。それも目安程度と考え、通話距離は条件次第で大きく変わるということです。

  



フィーダー

ハムの本-1


アマ無線とは ハムの免許 周波数(バンド) 電波型式(モード) バンドプラン コールサイン
通話表(フォネティックコード) 交信方法 無線機選び アンテナ選び 給電線とコネクター
電波伝搬 アマチュア無線の本-1 本-2   HOME    
 .


スカパー! レンタルサービス