[研究内容]    [経歴]    [研究業績]                                                               Jp/En       Last update: 2021/10/1


 国立研究開発法人海洋研究開発機構
 超先鋭研究開発部門
 高知コア研究所 岩石物性研究グループ

廣瀬 丈洋 (Takehiro Hirose)

〒783-8502  高知県南国市物部乙200
Tel: 088-878-2247
E-mail: hiroset (at) jamstec.go.jp


研究内容
大地震の発生メカニズムを物質学的な視点から解明することを目標に,自然断層調査と室内実験を連携させながら断層の性質を調べる研究をおこなっています.特に,地震時に断層が高速(秒速数メートル)ですべる時に断層帯内部で起こる物理・化学現象に興味をもっています.また,地震時の動的物理・化学現象よって断層沿いに放出されるガスや流体が,地下生命圏の維持・進化に寄与している可能性なども探っています.

・研究内容の紹介 (発表論文を通して
・高速摩擦実験 (地震の再現実験動画

専門
・構造地質学
・岩石力学

所属学会
・日本地質学会
・日本地震学会
・日本トライボロジー学会
・American Geophysical Union

研究航海
・IODP Exp.304    大西洋中央海嶺 海洋コアコンプレックス掘削(構造地質学)(2004/11/17~2005/1/8)
・IODP Exp.343    日本海溝 東北地方太平洋沖地震断層掘削(物理特性)(2012/4/1~5/21)
・IODP Exp.348    南海トラフ地震発生帯掘削(共同首席研究者)(2013/9/13~2014/1/20)
・JAMSTEC Chikyu   インド沖メタンハイドレート掘削(物理特性)(2015)
・IODP Exp.370    室戸沖限界生命圏掘削調査(物理特性)(2016/9/10~2016/11/23)
・IODP Exp.358    南海トラフ地震発生帯掘削(共同首席研究者)(2018/10/07~2019/03/31)

 


経歴
学歴
1992年3月 大阪教育大学教育学部附属高等学校平野校舎卒業
1997年3月 広島大学理学部 地球惑星システム学科卒業
1999年3月 広島大学理学研究科地球惑星システム学専攻 博士課程前期修了
2002年3月 京都大学大学院理学研究科地球惑星科学専攻 博士課程後期修了(理学博士)

職歴
2002年7月―2004年3月    スイス連邦工科大学 ポスドク研究員
2004年4月―2007年3月    日本学術振興会特別研究員(PD)(京都大学)
2007年4月―2007年8月    イタリア国立地球物理・火山研究所 上級研究員
2007年9月―2011年3月    海洋研究開発機構 高知コア研究所 研究員
2011年4月―2021年3月    海洋研究開発機構 高知コア研究所 主任研究員
2018年7月―現在             海洋研究開発機構 高知コア研究所 グループリーダー
2021年4月―現在             海洋研究開発機構 高知コア研究所 上席研究員

職歴(兼任)
2011年7月―2011年8月    ジョゼフ・フーリエ大学(グルノーブル第1大学) 客員教授
2011年4月―2018年3月  広島大学大学院理学研究科理学融合教育研究センター 客員准教授
2018年4月―2019年3月  広島大学大学院理学研究科理学融合教育研究センター 客員教授
2020年4月―現在      広島大学大学院先進理工系科学研究科 客員教授

 

 


研究業績
学術論文(査読有)

    1.    Bedford, J.D., Faulkner, D.R. Allen, M.J., Hirose, T., (2021) The stabilizing effect of high pore-fluid pressure along subduction megathrust faults: Evidence from friction experiments on accretionary sediments from the Nankai Trough, Earth and Planetary Science Letters, 574, 117161.  https://doi.org/10.1016/j.epsl.2021.117161

    2.    Mizoguchi, K., Uehara, S., Hirose, T., and Iizuka, S., (2021) Frictional stability of porous pyroclastic rock under subsurface low pressure and implications for shallow seismicity, Earth, Planets and Space, 73:101, https://doi.org/10.1186/s40623-021-01419-y

    3.    Hirose, T., Hamada, Y., Tanikawa, W., Kamiya, N., Yamamoto, Y., Tsuji, T., Kinoshita, M., Heuer, V., Inagaki, F., Morono, Y., Kubo, Y., (2021) High Fluid Pressure Patches beneath the Décollement: A Potential Source of Slow Earthquakes in the Nankai Trough off Cape Muroto. Journal of Geophysical Research: Solid Earth, 126,6. https://doi.org/10.1029/2021JB021831

    4.    Park, Y., Hirose, T., Ree, J.H., (2021) Carbonate fault mirrors with extremely low frictional aging rates: A possible source of slow earthquakes, Geophysical Research Letters, 48, 11. https://doi.org/10.1029/2021GL093749

    5.    Kitamura, M., Hirose, T., Lei, X., (2021) Mechanical Weakness of the Nankai Accretionary Prism: Insights from Vp Measurements of Drill Cuttings, Geochemistry, Geophysics, Geosystems, 22, 5. https://doi.org/10.1029/2020GC009536

    6.    V.B. Heuer, F. Inagaki, Y. Morono, Y. Kubo, A.J. Spivack, B. Viehweger, T. Treude, F. Beulig, F. Schubotz, S. Tonai, S. Bowden, M. Cramm, S. Henkel, T. Hirose, K. Homola, T. Hoshino, A. Ijiri, H. Imachi, N. Kamiya, M. Kaneko, L. Lagostina, H. Manners, H.-L. McClelland, K. Metcalfe, N. Okutsu, D.Pan, M.J. Raudsepp, J. Sauvage, M.-Y. Tsang, D.T. Wang, E. Whitaker, Y. Yamamoto, K. Yang, L.Maeda, R.R. Adhikari, C. Glombitza, Y. Hamada, J. Kallmeyer, J. Wendt, L. Wörmer, Y. Yamada, M. Kinoshita, K.-U. Hinrichs, (2020) Temperature limits to deep subseafloor life in the Nankai Trough subduction zone, Science, 370, 1230-1234. DOI: 10.1126/science.abd7934

    7.    Rempe, M., Di Toro, G., Mitchell, T., Smith, S., Hirose, T., & Renner, J., (2020). Influence of effective stress and pore-fluid pressure on fault strength and slip localization in calcite gouges. Journal of Geophysical Research, https://doi.org/10.1029/2020JB019805

    8.    Lin, W., Hirose, T., Tadai, O., Tanikawa, W., Ishitsuka, K., Yang, X. (2020). Thermal conductivity profile in the Nankai accretionary prism at IODP NanTroSEIZE Site C0002: estimations from high-pressure experiments using input site sediments. Geochemistry, Geophysics, Geosystems, 21, e2020GC009108. https://doi.org/10.1029/2020GC009108.

    9.    Seyler, C., Kirkpatrick, J., Savage, H, Hirose, T., & Faulkner, D. (2020).Rupture to the trench? Frictional properties and fracture energy of incoming sediments at the Cascadia subduction zone, accepted to Earth and Planetary Science Letters. Volume 546, 15. https://doi.org/10.1016/j.epsl.2020.116413

    10.  Kanagawa, K., Murayama, H., Sugita, A., Takahashi, M., Sawai, M., Furukawa, N., & Hirose, T. (2020). Weakening of quartz rocks at subseismic slip rates due to frictional heating, but not to lubrication by wear materials of hydrated amorphous silica or silica gel. Tectonophysics, 784, 228429. https://doi.org/10.1016/j.tecto.2020.228429

    11.  Han, R., C-M. Kim, S. Woo, G-Y. Jeong & Hirose, T. (2020). Structural records and mechanical characteristics of seismic slip along an active fault crosscutting unconsolidated Quaternary sediments: Suryum fault, SE Korea. Geosciences Journal, 1-11. http://dx.doi.org/10.1007/s12303-019-0037-4

    12.  Kitamura, M., Kitajima, H., Sone, H., Hamada, Y., & Hirose, T. (2019). Strength profile of the inner Nankai accretionary prism at IODP site C0002. Geophysical Research Letters, 46, 10,791–10,799. https://doi.org/10.1029/ 2019GL083732

    13.  Kim, J.H., Ree, J.H., Choi, J.H., Chauhan, N., Hirose, T., & Kitamura, M. (2019). Experimental Investigations on Dating the Last Earthquake Event using OSL Signals of Quartz from Fault Gouges. Tectonophysics, 769. https://doi.org/10.1016/j.tecto.2019.228191

    14.  Tsang, M.-Y., Bowden, S.A., Wang, Z., Mohammed, A., Tonai, S., Muirhead, D., Yang, K., Yamamoto, Y., Kamiya, N., Okutsu, N., Hirose, T., Kars, M., Schubotz, F., Ijiri, A., Yamada, Y., Kubo, Y., Morono, Y., Inagaki, F., Heuer, V.B., Hinrichs, K.-U., (2019) Hot fluids, burial metamorphism and thermal histories in the underthrust sediments at IODP 370 site C0023, Nankai Accretionary Complex, Marine and Petroleum Geology, 112, 104080. https://doi.org/10.1016/j.marpetgeo.2019.104080.

    15.  Brodsky, E.E., Mori, J. J., Anderson, L., Chester, F. M., Conin, M., Dunham, E. M., Eguchi, N., Fulton, P., Hino, R., Hirose, T., Ikari, M., Ishikawa, T., Jeppson, T., Kano, Y., Kirkpatrick, J., Kodaira, S., Lin, W., Nakamura, Y., Rabinowitz, H, Regalla, C., Remitti, F., Rowe, C., Saffer, D., Saito, S., Sample, J., Sanada, Y., Savage, H., Sun, T., Toczko, S., Ujiie, K., Wolfson-Schwehr, M. & Yang, T. (2020). The State of Stress on the Fault before, during and after a Major Earthquake. Annual Reviews in Earth & Planetary Sciences, 48:2.1–2.26. https://doi.org/10.1146/annurev-earth-053018-060507.

    16.  Y. Hamada, T. Hirose, S. Saito, K. Moe, H. Wu, W. Tanikawa, Y. Sanada, Y. Nakamura, Y. Shimmoto, T. Sugihara, W. Lin, N. Abe, L. Gupta, M. Kinoshita, Y. Masaki, S. Nomura, Y. Yamada & NGHP Expedition 02 JAMSTEC Science Team, Equivalent formation strength as a proxy tool for exploring the location and distribution of gas hydrates, Marine and Petroleum Geology, https://doi.org/10.1016/j.marpetgeo.2018.06.010

    17.  T. Hirose, W. Tanikawa, Y. Hamada, W. Lin, K. Hatakeda, O. Tadai, H. Y. Wu, S. Nomura, N. Abe, L. P. Gupta, T. Sugihara, Y. Masaki, M. Kinoshita, Y. Yamada, and NGHP Expedition 02 JAMSTEC Science Team, 2019, Strength characteristics of sediments from a gas hydrate deposit in the Krishna–Godavari Basin on the eastern margin of India, Marine and Petroleum Geology, 108, 348-355, https://doi.org/10.1016/j.marpetgeo.2018.08.017

    18.  W. Tanikawa, T. Hirose, Y. Hamada, L. Gupta; N. Ahagon, Y. Masaki, N. Abe, H. Wu, T. Sugihara, S. Nomura; W. Lin, M. Kinoshita, Y. Yamada, Porosity, permeability, and grain size of sediment cores from gas-hydrate-bearing sites and the implication of overpressure in shallow argillaceous formations, results from National Gas Hydrate Program Expedition 02, Krishna-Godavari Basin, India, Marine and Petroleum Geology, https://doi.org/10.1016/j.marpetgeo.2018.11.014 .

    19.  Kinoshita, M., A. Ijiri, S. Haraguchi, F.J. Jiménez-Espejo, N. Komai, H. Suga, T. Sugihara, W. Tanikawa, T. Hirose, Y. Hamada, L.P. Gupta, N. Ahagon, Y. Masaki, N. Abe, H.Y. Wu, S. Nomura, W. Lin, Y. Yamamoto, Y. Yamada and NGHP Expedition JAMSTEC Science Team, Constraints on the fluid supply rate into and through gas hydrate reservoir systems as inferred from pore-water chloride and in situ temperature profiles, Krishna-Godavari Basin, India, Marine and Petroleum Geology, https://doi.org/10.1016/j.marpetgeo.2018.12.049

    20.  Gupta, L.P., W. Tanikawa, Y. Hamada, T. Hirose, N. Ahagon, T. Sugihara, N. Abe, S. Nomura, Y. Masaki, H. Y. Wu, W. Lin, M. Kinoshita, Y. Yamada, NGHP Expedition 02 JAMSTEC Science Team, Examination of gas hydrate-bearing deep ocean sediments by X-ray Computed Tomography and verification of physical property measurements of sediments, Marine and Petroleum Geology, https://doi.org/10.1016/j.marpetgeo.2018.05.033

    21.  Ota, Y., H. Kawahata, J. Kuroda, A.Yamaguchi, A. Suzuki, D. Araoka, A. Abe-Ouchi, Y. Yamada, A. Ijiri, T. Kanamatsu, M. Kinoshita, M. Kyaw, W. Lin, S. Saito, Y. Sanada, Y. Hamada, Y. Nakamura, Y. Shinmoto, H. Wu, N. Ahagon, K. Aoike, K. Iijima, H. Machiyama, M. L. Tejada, K. Umetsu, Y. Usui, Y. Yamamoto, S. Yoshikawa, F. Jimenez-Espejo, S. Haraguchi, N. Komai, H. Suga, N. Abe, L. Gupta, T. Hirose, Y. Masaki, S. Nomura, T. Sugihara, W. Tanikawa, Y. Kubo, L. Maeda, S. Toczko. (2019) Indian Monsoonal Variations During the Past 80 Kyr Recorded in NGHP02 Hole 19B, Western Bay of Bengal: Implications From Chemical and Mineral Properties. Geochemistry Geophysics Geosystems, 20, 148-165. doi: 10.1029/2018GC007772

    22.  Hamada, Y., T. Hirose, A. Ijiri, Y. Yamada, Y. Sanada, S. Saito, N. Sakurai, T. Sugihara, T. Yokoyama, T. Saruhashi, T. Hoshino, N. Kamiya, S. Bowden, M. Cramm, S. Henkel, K. Homola, H. Imachi, M. Kaneko, L. Lagostina, H. Manners, H.L. McClelland, K. Metcalfe, N. Okutsu, D. Pan, M.J. Raudsepp, J. Sauvage, F. Schubotz, A. Spivack, S. Tonai, T. Treude, M.Y. Tsang, B. Viehweger, D.T. Wang, E. Whitaker, Y. Yamamoto, K. Yang, M. Kinoshita, L. Maeda, Y. Kubo, Y. Morono, F. Inagaki & V.B. Heuer, (2018) In-situ mechanical weakness of subducting sediments beneath a plate boundary décollement in the Nankai Trough, Progress in Earth and Planetary Science, 5:70. https://doi.org/10.1186/s40645-018-0228-z

    23.  Yamamoto, Y., S. Chiyonobu, T. Kanamatsu, N. Ahagon, K. Aoike, N. Kamiya, T. Ojima, T. Hirose, T. Sugihara, S. Saito, M. Kinoshita, Y., Kubo, Y. Yamada, NGHP02 Scientists, (2019) Repeated large-scale mass-transport deposits and consequent rapid sedimentation in the western part of the Bay of Bengal, IndiaGeological Society, London, Special Publications, 477, 183-193. https://doi.org/10.1144/SP477.12

    24.  Tanikawa, W., G. Uramoto, Y. Hamada, M. Murayama, Y. Yamamoto, T. Hirose, O. Tadai, K. Tanaka, H. Ozaki, M. Yoneda, and H. Tokuyama, (2019) Provenance of submerged stone pillars in an earthquake and typhoon hazard zone, coastal Tosashimizu, southwest Japan: A multidisciplinary geological approach, Marine Geology, 415, 105962, doi.org/10.1016/j.margeo.2019.105962.

    25.  Wallace, P.A., S.H. De Angelis, A.J. Hornby, J.E. Kendrick, S. Clesham, F.W. von Aulock, A. Hughes, J.E.P. Utley, T. Hirose, D.B. Dingwell, Y. Lavallee, (2019) Frictional melt homogenisation during fault slip: Geochemical, textural and rheological fingerprints, Geochimica et Cosmochimica Acta, 255, 265-288, doi.org/10.1016/j.gca.2019.04.010.

    26.  Tonai, S., Y. Kubo, M.Y. Tsang, S. Bowden, K. Ide, T. Hirose, N. Kamiya, Y. Yamamoto, K. Yang, Y. Yamada, Y. Morono, V. Heuer and F. Inagaki, (2019) A new method for quality control of geological cores by X-ray Computed Tomography and its application in IODP Expedition 370, Front. Earth Sci., 7, 117, doi.org/10.3389/feart.2019.00117.

    27.  Han, R., J-S. Kim, C-M. Kim, T. Hirose, J. O. Jeong, and G. Y. Jeong, (2019) Dynamic weakening of ring faults and catastrophic caldera collapses, Geology, 47. 107-110, https://doi.org/10.1130/G45687.1

    28.  高橋 美紀・廣瀬 丈洋・飯尾 能久 (2018) 断層の強度に関する論争と学際的アプローチの必要性.地質学雑誌,124725-739. https://doi.org/10.5575/geosoc.2018.0015

    29.  Hamada, Y., M. Kitamura, Y. Yamada, Y. Sanada, T. Sugihara, S. Saito, K. Moe, and T. Hirose, (2018) Continuous depth profile of the rock strength in the Nankai accretionary prism based on drilling performance parameters, Scientific Reports, 8, DOI:10.1038/s41598-018-20870-8.

    30.  木村 学・木下 正高・金川 久一・金松 敏也・芦 寿一郎・斎藤 実篤・廣瀬 丈洋・山田 泰広・荒木 英一郎,・江口 暢久・Toczko Sean (2018) 南海トラフ地震発生帯掘削がもたらした沈み込み帯の新しい描像,地質学雑誌124, 47-65, doi: 10.5575/geosoc.2017.0069.

    31.  廣瀬丈洋 (2017) 実験室から探る南海トラフ地震断層運動,地盤工学会誌 ,講座「南海トラフ巨大地震・津波発生の真実にせまる~強靭な社会の構築に向けて」, 65-11/12, 70-77

    32.  Kitajima, H., D. Saffer, H Sone, H. Tobin, and T. Hirose, (2017) In-situ stress and pore pressure in a deep interior of the Nankai accretionary wedge, IODP Site C0002, Geophys. Res. Lett., 44, https://doi.org/10.1002/2017GL075127.

    33.  Sawai, M., A.R. Niemeijer, T. Hirose, and C.J. Spiers, (2017) Frictional properties of JFAST core samples and implications for slow slip events at the Tohoku subduction zone, Geophys. Res. Lett., 44, 8822–8831, doi:10.1002/2017GL073460.

    34.  為人・廣瀬丈洋・谷川 亘・濱田洋平 (2017) 科学掘削による地震断層の応力状態・物性・すべりパラメーターの評価,地学雑誌126, 223-246, doi:10.5026/jgeography.126.223.

    35.  Lee, S.K., R. Han, E.J. Kim, G.Y. Jeong, H. Khim & T. Hirose, (2017) Quasi-equilibrium melting of quartzite upon extreme friction, Nature Geoscience, 10, 436–441, doi:10.1038/ngeo2951.

    36.  Kitamura M., and Hirose T., (2017) Strength determination of rocks by using indentation tests with a spherical indenter, Journal of Structural Geology, 98, 1-11, doi.org/10.1016/j.jsg.2017.03.009.

    37.  Rempe M., Smith S., Mitchell M., Hirose T., & Di Toro G., (2017) The effect of water on strain localization in calcite fault gouge, Journal of Structural Geology, 97, 104-117, http://doi.org/10.1016/j.jsg.2017.02.007.

    38.  Brown K., Poeppe, D., Josh M., Sample J., Even E., Saffer D., Tobin H., Hirose T., Kulongoskih J.T., Toczko S., Maeda L., and the IODP Expedition 348 Shipboard Party (2017), The action of water films at A-scales in the earth: implications for the Nankai subduction systems, Earth and Planetary Science Letters, 463, 266-276. http://dx.doi.org/10.1016/j.epsl.2016.12.042

    39.  Mizoguchi, K., and T. Hirose, (2016), Transient water adsorption on newly formed fault gouge and its relation to frictional heating, Geophys. Res. Lett., 43, doi:10.1002/2016GL069776.

    40.  Sawai, M., A. R. Niemeijer, O. Plümper, T. Hirose, and C. J. Spiers (2016), Nucleation of frictional instability caused by fluid pressurization in subducted blueschist, Geophys. Res. Lett., 43, doi:10.1002/2015GL067569.

    41.  Wada, J.-i., K. Kanagawa, H. Kitajima, M. Takahashi, A. Inoue, T. Hirose, J.-i. Ando, and H. Noda (2016), Frictional strength of ground dolerite gouge at a wide range of slip rates, J. Geophys. Res., 21, 2961–2979,doi:10.1002/2015JB012013.

    42.  Lavallée, Y., T. Hirose, J.E. Kendrick, K.-U. Hess and D.B. Dingwell, (2015) Fault rheology beyond frictional melting, PNAS, 112, no.30, 9276-9280. doi/10.1073/pnas.1413608112.

    43.  Oohashi, K., T. Hirose, M. Takahashi, and W. Tanikawa, (2015) Dynamic weakening of smectite-bearing faults at intermediate velocities: Implications for subduction zone earthquakes, J. Geophys. Res. Solid Earth, 120, 1572–1586, doi:10.1002/2015JB011881.

    44.  Hornby, A., J.E. Kendrick, O.D. Lamb, T. Hirose, S. De Angelis, F.W. Aulock, K. Umakoshi, T. Miwa, S.H. De Angelis, F.B. Wadsworth, K.-U. Hess, D.B. Dingwell, and Y. Lavallée, (2015) Spine growth and seismogenic friction at Mt Unzen, Japan, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2014JB011660.

    45.  Kameda, J., Shimizu, M., Ujiie, K., Hirose, T., Ikari, M., Mori, J., Oohashi, K. & Kimura, G. (2015) Pelagic smectite as an important factor in tsunamigenic slip along the Japan Trench. Geology, 43(2), 155-158. https://doi.org/10.1130/G35948.1

    46.  Suzuki, K., Kato, S., Shibuya, T., Hirose, T., Fuchida, S., Kumar, V. R., and Urabe, T. (2015) Development of Hydrothermal and Frictional Experimental Systems to Simulate Sub-seafloor Water–Rock–Microbe Interactions. In Subseafloor Biosphere Linked to Hydrothermal Systems, pp. 71-85, Springer Japan. DOI: 10.1007/978-4-431-54865-2

    47.  Suzuki, K., Shibuya, T., Yoshizaki, M., & Hirose, T. (2015) Experimental Hydrogen Production in Hydrothermal and Fault Systems: Significance for Habitability of Subseafloor H2 Chemoautotroph Microbial Ecosystems. In Subseafloor Biosphere Linked to Hydrothermal Systems, pp. 87-94, Springer Japan. https://doi.org/10.1007/978-4-431-54865-2_8

    48.  Han, R., T. Hirose, G. Y. Jeong, J.-I. Ando,and H. Mukoyoshi (2014), Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications, Geophys. Res. Lett., 41, 5457–5466, doi:10.1002/2014GL061246.

    49.  Tanikawa W., H.Mukoyoshi, W. Lin, T. Hirose, and A. Tsutsumi (2014), Pressure dependence of fluid transport properties of shallow fault systems in the Nankai subduction zone, Earth, Planets and Space, 66. doi:10.1186/1880-5981-66-90.

    50.  Sawai, M., T. Hirose, and J. Kameda, (2014), Frictional properties of incoming pelagic sediments at the Japan Trench: implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake, Earth, Planets and Space, 66:65. doi:10.1186/1880-5981-66-65.

    51.  Lavallée, Y., T. Hirose, J.E. Kendrick, S. DeAngelis, L. Petrakova, A.J. Hornby, and D.B. Dingwell (2014), A frictional law for volcanic ash gouge, Earth Planet. Sci. Lett., 400, 177-183, doi:10.1016/j.epsl.2014.05.023.

    52.  Kendrick, J. E., Lavallée, Y., Hirose, T., Di Toro, G., Hornby, A.J., De Angelis, S. and Dingwell, D.B., (2014) Volcanic drumbeat seismicity caused by stick-slip motion and magmatic frictional melting, Nature Geoscience 7, 438–442 (2014) doi:10.1038/ngeo2146.

    53.  French, M. E., H. Kitajima, J. S. Chester, F. M. Chester, and T. Hirose (2014), Displacement and dynamic weakening processes in smectite-rich gouge from the Central Deforming Zone of the San Andreas Fault, J. Geophys. Res. Solid Earth, 119, doi:10.1002/2013JB010757.

    54.  北村真奈美・向吉秀樹・廣瀬丈洋 (2014), 付加体内部に発達する断層の変位量と幅との相関関係.地質学雑誌120 (1), 11-21.

    55.  Oohashi, K., T. Hirose, and T. Shimamoto, (2013) Graphite as a lubricating agent in fault zones: An insight from low- to high-velocity friction experiments on a mixed graphite-quartz gouge, J. Geophys. Res., 118, 2067–2084, doi:10.1002/jgrb.50175. Selected as “JGR Journal Highlight”

    56.  Tanikawa, W., Hirose, T., Mukoyoshi, H., Tadai, O., and Lin, W., (2013). Fluid transport properties in sediments and their role in large slip near the surface of the plate boundary fault in the Japan Trench. Earth and Planetary Science Letters, 382, 150-160. https://doi.org/10.1016/j.epsl.2013.08.052

    57.  Ohtomo, Y., Ijiri, A., Ikegawa, Y., Tsutsumi, M., Imachi, H., Uramoto, G., Hoshino, T., Morono, Y., Sakai, S., Saito, U., Tanikawa, W., Hirose, T., and Inagaki, F. (2013) Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system. Frontiers in microbiology, 4, doi: 10.3389/fmicb.2013.00361.

    58.  Fulton, P. M., Brodsky, E. E., Kano, Y., Mori, J., Chester, F., Ishikawa, T., Harris, R.N., Lin, W., Eguchi, N., Toczko, S. and the Exp. 343/343T and KR13-08 Scientists (Hirose included), (2013) Low coseismic friction on the Tohoku-oki fault determined from temperature measurements. Science, 342, 1214-1217.

    59.  Ujiie, K., Tanaka, H., Saito, T., Tsutsumi, A., Mori, J. J., Kameda, J., Brodsky, E. E., Chester, F. M., Eguchi, N., Toczko, S. and Expedition 343 and 343T Scientists (Hirose included), (2013) Low coseismic shear stress on the Tohoku-oki megathrust determined from laboratory experiments. Science, 342, 1211-1214.

    60.  Chester, F. M., Rowe, C., Ujiie, K., Kirkpatrick, J., Regalla, C., Remitti, F., Moore, J. C., Toy, V., Wolfson-Schwehr, M., Bose, S., Kameda, J., Mori, J. J., Brodsky, E. E., Eguchi, E., Toczko, S. and Expedition 343 and 343T Scientists (Hirose included), (2013) Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-oki earthquake. Science, 342, 1208-1211.

    61.  Lin, W., Conin, M., Moore, J. C., Chester, F. M., Nakamura, Y., Mori, J. J., Anderson, L., Brodsky, E., Eguchi, N., and Expedition 343 Scientists (Hirose included), (2013) Stress state in the largest displacement area of the 2011 Tohoku-Oki earthquake. Science, 339, 687-690. DOI: 10.1126/science.1229379.

    62.  Noguchi, T., Tanikawa, W., Hirose, T., Lin, W., Kawagucci, S., Yoshida-Takashima, Y., Honda, M., Takai, K., Kitazato, K., and Okamura, K., (2012) Dynamic process of turbidity generation triggered by the 2011 Tohoku-Oki earthquake. Geochem. Geophys. Geosyst. 13, Q11003, doi:10.1029/2012GC004360.

    63.  Boutareaud, S., T. Hirose, M. Andréani, M. Pec, D.-G. Calugaru, A.-M. Boullier, and M.-L. Doan (2012), On the role of phyllosilicates on fault lubrication: Insight from micro- and nanostructural investigations on talc friction experiments, Journal of Geophysical Research, 117, B08408, doi:10.1029/2011JB009006.

    64.  Han, R., Hirose, T (2012) Clay clast aggregates in fault gouge: An unequivocal indicator of seismic faulting at shallow depths? Journal of Structural Geology, 43, 92-99, http://dx.doi.org/10.1016/j.jsg.2012.07.008.

    65.  Kitamura, M., H. Mukoyoshi, P. M. Fulton, and T. Hirose (2012) Coal maturation by frictional heat during rapid fault slip, Geophysical Research Letters, 39, L16302, doi:10.1029/2012GL052316.

    66.  Tanikawa, W., H. Mukoyoshi, O. Tadai, T. Hirose, A. Tsutsumi, and W. Lin (2012), Velocity dependence of shear-induced permeability associated with frictional behavior in fault zones of the Nankai subduction zone, Journal of Geophysical Research, 117, B05405, doi:10.1029/2011JB008956.

    67.  Lavallee Y., Mitchell T.M., Heap J.M., Vasseur J., Hess K., Hirose T., Dingwell B.D., (2012) Experimental generation of volcanic pseudotachylites: constraining rheology, Journal of Structural Geology, 38, 222-233, doi:10.1016/j.jsg.2012.02.001.

    68.  Hirose T., K. Mizoguchi, and T. Shimamoto, (2012) Wear processes in rocks at slow to high slip rates, Journal of Structural Geology, 38, 102-116, doi:10.1016/j.jsg.2011.12.007.

    69.  Oohashi, K., T. Hirose, K. Kobayashi and T. Shimamoto (2012) The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: origins and implications for fault creep, Journal of Structural Geology, 38, 39-50, doi:10.1016/j.jsg.2011.10.011.

    70.  De Paola, N., Chiodini G., Hirose T., Cardellini C., Caliro C. and Shimamoto T., (2011) The geochemical signature caused by earthquake propagation in carbonate-hosted faults, Earth and Planetary Science Letters, 310, 225-232, doi:10.1016/j.epsl.2011.09.001.

    71.  Ferri, F., G. Di Toro, T. Hirose, R. Han, H. Noda, T. Shimamoto, M. Quaresimin, and N. de Rossi (2011) Low- To High-Velocity Frictional Properties Of The Clay-Rich Gouges From The Slipping Zone Of The 1963 Vaiont Slide (Northern Italy), Journal of Geophysical Research, 116, B09208, doi:10.1029/2011JB008338.

    72.  Faulkner D.R., Mitchell T., Behnsen J., Hirose T. and Shimamoto T., (2011) Stuck in the smud? Earthquake nucleation and propagation through accretionary forearcs, Geophysical Research Letters, 38, L18303, doi:10.1029/2011GL048552.

    73.  Hirose T., Kawagucci S. and Suzuki K., (2011) Mechanoradical H2 generation during simulated faulting: Implications for an earthquake-driven dark energy biosphere, Geophysical Research Letters, 38, L17303, doi:10.1029/2011GL048850.

    74.  Lin W., Tadai O., Hirose T., Tanikawa W., Takahashi M., Mukoyoshi H. and Kinoshita M., (2011) Thermal conductivities under high pressure in core samples from IODP NanTroSEIZE drilling site C0001, Geochemistry, Geophysics, Geosystems, 12, Q0AD14, doi:10.1029/2010GC003449.

    75.  Blackman D.K., Ildefonse B., John B.E., Ohara Y., Miller D.J. and IODP 304-305 Science Party (Hirose included), (2011) Drilling Constraints on Lithospheric Accretion and Evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N, Journal of Geophysical Research, 116, B07103, doi:10.1029/2010JB007931.

    76.  Noda H., Kanagawa K., Hirose T. and Inoue A., (2011) Frictional experiments at intermediate slip rates with controlling temperature, Journal of Geophysical Research, 116, B07306, doi:10.1029/2010JB007945.

    77.  Oohashi, K., T. Hirose and T. Shimamoto, (2011) Shear-induced graphitization of carbonaceous materials during seismic fault motion: experiments and possible implications for fault mechanics, Journal of structural Geology, 33, 1122-1134, doi:10.1016/j.jsg.2011.01.007.

    78.  Togo T., T. Shimamoto, S. Ma and T. Hirose (2011) High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop, Sichuan, China and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake, Earthquake Science, 24, 267-281, doi:10.1007/s11589-011-0790-6.

    79.  G. Di Toro, R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco and T. Shimamoto, (2011) Fault lubrication during earthquakes, Nature, 471,494-498, doi:10.1038/nature09838.

    80.  Han R., Hirose T., Shimamoto T., Lee Y. and Ando J. (2011) Granular nanoparticles lubricate faults during seismic slip, Geology, 39(6) 599-602, doi:10.1130/G31842.1.

    81.  De Paola, N., T. Hirose, T. Mitchell, G. Di Toro, C. Viti, and T. Shimamoto, (2011) Fault lubrication and earthquake propagation in thermally unstable rocks, Geology, 39(1), 35-38, doi:10.1130/G31398.1.

    82.  Viti C., and T. Hirose, (2010), Thermal decomposition of serpentine during coseismic faulting: nanostructures and mineral reactions, Journal of Structural Geology, 32(10), 1476-1484. https://doi.org/10.1016/j.jsg.2010.09.009

    83.  Nielsen, S., P. Mosca, G. Giberti, G. Di Toro, T. Hirose, and T. Shimamoto, (2010), On the transient behavior of frictional melt during seismic slip, Journal of Geophysical Research, 113, B01308, doi:10.1029/2009JB007020.

    84.  Ferri, F., G. Di Toro, T. Hirose, and T. Shimamoto, (2010) Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges, Terra Nova, 22(5), 347-353. DOI: 10.1111/j.1365-3121.2010.00955.x

    85.  Tanikawa, W., M. Sakaguchi, O. Tadai, and T. Hirose, (2010) Influence of fault slip rate on shearinduced permeability, Journal of Geophysical Research, 115, B07412, doi:10.1029/2009JB007013.

    86.  Han, R., T. Hirose, and T. Shimamoto, (2010) Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates, Journal of Geophysical Research, 115, B03412, doi:10.1029/2008JB006136.

    87.  Matsumoto, D., Shimamoto, T., Hirose, T., Gunatilake, J., Wickramasooriya, A., DeLile, J., Young, S., Rathnayake, C., Ranasooriya, J. and Murayama, M., (2010) Thickness and grain-size distribution of the 2004 Indian Ocean tsunami deposits in Periya Kalapuwa Lagoon, eastern Sri Lanka, Sedimentary Geology, 230, 95-104. https://doi.org/10.1016/j.sedgeo.2010.06.021

    88.  Stunitz H., Keulenb N., Hirose T., and Heilbronnerb R., (2010) Grain size distribution and microstructures of experimentally sheared granitoid gouge at coseismic slip rates ? criteria to distinguish seismic and aseismic faults? Journal of Structural Geology, 32, 59-69, doi:10.1016/j.jsg.2009.08.002.

    89.  Del Gaudio P., Di Toro G., Han R., Hirose T., Nielsen S., Shimamoto T., Cavallo A., (2009) Frictional melting of peridotite and seismic slip. Journal of Geophysical Research, 114, B06306, doi:10.1029/2008JB005990.

    90.  Mizoguchi K., Hirose T., Shimamoto T. and Fukuyama E., (2009) High-velocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault, southwest Japan. Tectonophysics, 471, 3-4, 285-296. https://doi.org/10.1016/j.tecto.2009.02.033

    91.  Viti C. and Hirose T., (2009) Dehydration reactions and micro/nanostructures in experimentally-deformed serpentinites. Contributions to Mineralogy and Petrology, 157, 327-338, DOI 10.1007/s00410-008-0337-6.

    92.  垣・谷川 亘・廣瀬丈洋・林 為人・谷水雅治・石川剛志・廣野哲朗・中村教博・三島稔明・En-Chao YehSheng-Rong SongKuo-Fong Ma, (2009) 1999年台湾集集地震を引き起こしたチェルンプ断層の深部掘削の成果概要 -明らかになってきた断層岩の物質科学と今後の課題-地質学雑誌, 115, 488-500.

    93.  Sato K., Kumagai H., Hirose T., Tamura H., Mizoguchi K. and Shimamoto T., (2009) Experimental study for noble gas release and exchange under high-speed frictional melting. Chemical Geology, 266, 1-2, 96-103. DOI: 10.1016/j.chemgeo.2008.12.017

    94.  Mizoguchi K., Hirose T., Shimamoto T. and Fukuyama E., (2009) Fault Heals Rapidly after Dynamic Weakening. Bulletin of Seismological society of America, 95(5), 1666-1673, doi: 10.1785/0120080325.

    95.  Michibayashi K., Hirose T., Nozaka T., Harigane Y., Escartin J., Delius H., Linek M. and Ohara Y., (2008) Hydration due to high-T brittle failure within in situ oceanic crust, 30°N Mid-Atlantic Ridge. Earth and Planetary Science Letters, 275, 348-354. https://doi.org/10.1016/j.epsl.2008.08.033

    96.  Hirose T., and Hayman N., (2008) Structure, permeability, and strength of a fault zone in the footwall of an oceanic core complex, the Central Dome of the Atlantis Massif, Mid-Atlantic Ridge, 30N. Journal of Structural Geology, 30, 1060-1071, doi:10.1016/j.jsg.2008.04.009.

    97.  Mizoguchi K., Hirose T., Shimamoto T. and Fukuyama E., (2008) Internal structure and permeability of the Nojima fault, southwest Japan. Journal of Structural Geology, 30, 513-524, doi:10.1016/j.jsg.2007.12.002.

    98.  Nielsen S., Di Toro G., Hirose T., and Shimamoto T., (2008) Frictional melts and seismic slip. Journal of Geophysical Research, 113, B01308, doi:10.1029/2007JB005122.

    99.  Hirose T. and Bystricky M., (2007) Extreme dynamic weakening of faults during dehydration by coseismic shear heating. Geophysical Research Letters, 34, L14311, doi:10.1029/2007GL030049.

    100.  Han R., Shimamoto T., Hirose T., Ree J.H. and Ando J., (2007) Ultra-low friction of carbonate faults caused by thermal decomposition during seismic slip. Science, 316, 878-881. DOI: 10.1126/science.1139763

    101.  Mizoguchi K., Hirose T., Shimamoto T. and Fukuyama E., (2007) Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake. Geophysical Research Letters, 34, L01308, doi:10.1029/2006GL027931.

    102.  Ildefonse, B., Blackman, D. K., John, B.E., Ohara, Y., Miller, D. J., MacLeod, C. J. and IODP Expeditions 304/305 Science Party (Hirose included), (2007) Oceanic Core Complexes and crustal accretion at slow-spreading ridges. Geology, 35, 623-626.

    103.  Di Toro G., Hirose T., Nielsen S. and Shimamoto T., (2006) Relating High-Velocity Rock-Friction Experiments to Coseismic Slip in the Presence of Melts. In Radiated Energy and the Physics of Earthquake Faulting, edited by R. Abercrombie, A. McGarr, H. Kanamori, and G. Di Toro, AGU Geophysical Monograph, 170, 121-134, Washington, D. C. https://doi.org/10.1029/170GM13

    104.  Hirose T., Bystricky M., Stünitz H. and Kunze K., (2006) Semi-brittle flow during dehydration of lizardite-chrysotile serpentinite deformed in torsion: Implications for the rheology of oceanic lithosphere. Earth and Planetary Science Letters, 249, 484-493, doi: 10.1016/j.epsl.2006.07.014.

    105.  Mizoguchi K., Hirose T., Shimamoto T. and Fukuyama E., (2006) Moisture-related weakening and strengthening of a fault activated at seismic slip rates. Geophysical Research Letters, 33, L16319, doi:10.1029/2006GL026980.

    106.  Di Toro G., Hirose T., Nielsen S., Pennacchioni G., Shimamoto T., (2006) Natural and experimental evidence of melt lubrication of faults during earthquakes. Science, 311, 647-649. DOI: 10.1126/science.1121012

    107.  Hirose T. and Shimamoto T., (2005) Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research, 110(B5), B05202, 10.1029/2004JB003207.

    108.  Hirose T. and Shimamoto T., (2005) Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes. Bulletin of Seismological society of America, 95(5), 1666-1673. DOI: 10.1785/0120040131

    109.  廣瀬丈洋・早坂康隆,(2005) 西南日本内帯先白亜系のナップ境界断層帯の内部構造と透水性~丹波帯-超丹波帯境界における解析例~. 地質学雑誌, 111(5), 300-307.

    110.  Tsutsumi A., Nishino S., Mizoguchi K., Hirose T., Uehara S., Sato K., Tanikawa, W. and Shimamoto T., (2004) Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, Southwest Japan. Tectonophysics, 379, 93-108. https://doi.org/10.1016/j.tecto.2003.10.007

    111.  Hirose T. and Shimamoto T., (2003) Fractal dimension of molten surfaces as a possible parameter to infer the slip-weakening distance of faults from natural pseudotachylytes. Journal of Structural Geology, 25, 1569-1574. https://doi.org/10.1016/S0191-8141(03)00009-9

    112.  嶋本利彦・廣瀬丈洋・溝口一生・野田博之, (2003) 断層の高速摩擦と地震の発生過程: 現状と展望. 地学雑誌, 112(6), 979-999.

    113.  堤 昭人・廣瀬丈洋・溝口一生・佐藤慶治・嶋本利彦, (2003) ガス圧式三軸変形試験機を用いた岩石の浸透率測定-掛川層群の浸透率構造解析例-. 資源と素材, 「岩の室内透水試験手法」小特集(1)-透水試験手法の高度化-, 119,514-518.

    114.  Nakamura N., Hirose T. and Borradaile G.J., (2002) Laboratory verification of submicron magnetite production in pseudotachylytes: relevance for paleointensity studies. Earth and Planetary Science Letters, 201, 13-18. DOI: 10.1016/S0012-821X(02)00704-5

     

     

    査読なし

    1.    Tobin, H., Hirose, T., Ikari, M., Kanagawa, K., Kimura, G., Kinoshita, M., Kitajima, H., Saffer, D., Yamaguchi, A. Eguchi, N., Maeda, L., Toczko, S., and the Expedition 358 Scientists, (2020) Proceedings of the International Ocean Discovery Program: Volume 358 NanTroSEIZE Plate Boundary Deep Riser 4: Nankai Seismogenic/Slow Slip Megathrust. International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.358.2020

    2.    Tobin, H., Hirose, T., Ikari, M., Kanagawa, K., Kimura, G., Kinoshita, M., Kitajima, H., Saffer, D., Yamaguchi, A. Eguchi, N., Maeda, L., Toczko, S., and the Expedition 358 Scientists, (2019) Expedition 358 Preliminary Report: NanTroSEIZE Plate Boundary Deep Riser 4: Nankai Seismogenic/Slow Slip Megathrust. International Ocean Discovery Program. https://doi.org/10.14379/iodp.pr.358.2019

    3.    廣瀬丈洋, 木村 , 木下正高, 山口飛鳥 (2019). IODP Exp. 358 NanTroSEIZE Deep Riser Drilling 航海報告 「超深度ライザー掘削によって南海地震歪蓄積域から検層データ・地質試料を採取!」. J-DESC News letter Vol. 12, 11-14. 

    4.    廣瀬丈洋 (2015) 超深度ライザー掘削によって南海付加体深部からはじめて検層データ・地質試料の採取に成功!JDESC News Letter, Vol. 8, 5.

    5.    Tobin, H., Hirose, T., Saffer, D., Toczko, S., Maeda, L., Kubo, Y., and the Expedition 348 Scientists, (2015) Proceedings of the International Ocean Discovery Program: Volumen 348: College Station, TX Integrated Ocean Drilling Program. doi:10.2204/iodp.proc.348.2015.

    6.    廣瀬丈洋 (2015) 実験室から探る地震発生のメカニズム(5.2章),地球のしくみを理解する 広島大学地球惑星システム学科編, 広島大学出版会

    7.    Hirose, T., Saffer, D.M., Tobin, H.J., Toczko, S., Maeda, L., Kubo, Y., Kimura, G., Moore, G.F., Underwood, M.B., and Kanagawa, K., (2013) NanTroSEIZE Stage 3: NanTroSEIZE plate boundary deep riser 3. IODP Sci. Prosp., 348. doi:10.2204/iodp.sp.348.2013.

    8.    Lin, W., Tadai, O., Takahashi, M., Sato, D., Hirose, T., Tanikawa, W., (2010) Comparison of bulk densities and porosities of various rock samples measured by different techniques. Geologically Active: Proceedings of the 11th Iaeg Congress. Auckland, New Zealand, 5-10 September 2010.

    9.    廣瀬丈洋・高橋美紀 (2010) 蛇紋岩の摩擦特性と断層運動-研究レビューと最近の成果-,月刊地球32(3), 156-161.

    10.  Sato K., Hirose T., Tamura H., Kumagai H., and Mizoguchi K., (2009) Volatile gas analysis released from simulated faults during frictional melting:experimental technique and preliminary results. JAMSTEC-R IFREE Special Issue, 51-57.

    11.  多田井修・谷川亘・林為人・廣瀬丈洋・坂口真澄,(2009) 掘削試料の非定常細線加熱法による伝導率測定とその問題点.JAMSTEC Rep. Res. Dev., 9(2), 1-14.

    12.  嶋本利彦・堤昭人・廣瀬丈洋・相澤泰隆・曽根大貴・上原真一・谷川 亘・野田博之・溝口一生, (2006) 京都大学の摩擦・変形・透水試験機. 構造地質49, 49-71.

    13.  Sone H., Hirose T., Uehara S., Noda H., Aizawa Y., Mizoguchi K., Tanikawa W., Tsutsumi A. and Shimamoto T., (2006) Rock Deformation Apparatuses at Kyoto University. Japanese Journal of Structural Geology, 49, v-viii.

    14.  早坂康隆・廣瀬丈洋, (2002) ナップ境界の現象論.月刊地球号外, no. 36, 76-81.

    15.  Shimamoto T., Hirose T., Mizoguchi K. and Fukuchi T., (2002) Frictional heating and high-velocity frictional properties of faults. Proceeding of International symposium on International Workshop on Physics of Active Fault, 234, 233-233.

    16.  Shimamoto T., Tanikawa W., Hirose T., Mizoguchi K. and Fukuchi T., (2001) High-velocity friction and dynamic motion of the Chelungpu Fault: an insight from laboratory experiments on the shallow drill core. Proceedings of ICDP Workshop on Drilling the Chelungpu Fault, Taiwan; Investigating the Physics of Faulting for a Recent large Earthquake, 70-75.

    17.  Wibberley C., Hirose T. and Shimamoto T., (2001) Permeability structure of large fault zones and consequences for fluid-controlled fault dynamics. Proceeding of International symposium on slip processes in and below the seismogenic region, 367-373.

    18.  Tsutsumi A., Uehara S., Mizoguchi K., Nishino S., Hirose T., Tanikawa W., Wibberley C. and Shimamoto T., (2001) Internal and permeability structures of several active fault zones in Japan. Proceeding of International symposium on slip processes in and below the seismogenic region, 751-755.

    19.  廣瀬丈洋(2000) ガブロの摩擦熔融と断層の高速摩擦.月刊地球号外no. 3151-57.

    20.  溝口一生・廣瀬丈洋・嶋本利彦,(2000) 野島断層の透水性構造-兵庫県津名郡北淡町舟木露頭の解析-.月刊地球号外no. 3158-65.

    21.  坂島俊彦・早坂康隆・廣瀬丈洋(1998) 九州における三郡-中国帯の延長-木の葉変成岩の帰属-.九州のテクトニクスワーキンググループ研究連絡誌, no. 2, 21-26.

    22.  早坂康隆・廣瀬丈洋(1997) 三郡-中国帯のナップ構造の広がりと九州の地帯構造.九州のテクトニクスワーキンググループ研究連絡誌, no. 1, 1-6.