[Research]    [CV]    [Publications]                                                  Jp/En        Last update: 2021/10/1


Takehiro Hirose

Principal Researcher
Structural Geology & Rock Mechanics

Kochi Institute for Core Sample Research, JAMSTEC
200 Monobe-otsu Nankoku,
Kochi, 783-8502 JAPAN
Tel: +81-88-878-2247
E-mail: hiroset (at) jamstec.go.jp


Research Interests
My major research interest has been on integrated field and laboratory studies to determine mechanical and transport properties of fault zones towards understanding the mechanisms of earthquakes. I am particularly interested in revealing the interactions between physical, chemical and biological processes operating within seismogenic fault zones.

Demonstration of coseismic fault slip in laboratory (movie)

Expeditions
・IODP Exp.304     Atlantis Massif—Oceanic Core Complex formation (structural geologist) (2004/11/17 - 2005/01/08)
・IODP Exp.343     Japan Trench Fast Drilling Project (physical property) (2012/04/01~05/21)
・IODP Exp.348     Nankai Trough Seismogenic Zone Experiment (co-chief scientist)  (2013/09/13~2014/01/20)
・Chikyu Exp.         National Gas Hydrate Program Expedition 02  (physical property) (2015)
・IODP Exp.370     T-Limit of the Deep Biosphere off Muroto (physical property) (2016/09/10~2016/11/23)
・IODP Exp.358     Nankai Trough Seismogenic Zone Experiment (co-chief scientist) (2018/10/07~2019/03/31)

 


Curriculum Vitae
Education
1999―2002    Doctor of Science, Department of Geology and Mineralogy, Graduate School of Science, Kyoto University
1997―1999    Mater of Science, Department of Earth and Planetary System Sciences, Graduate School of Science, Hiroshima University
1993―1997    Bachelor of Science, Department of Earth and Planetary System Sciences, Hiroshima University

Employment
Apr/2021―Present         Principal Researcher, Japan Agency for Marine-Earth Science and Technology, Japan
Apr/2011―Mar/2021     Senior Researcher, Japan Agency for Marine-Earth Science and Technology, Japan
Sep/2007―Mar/2011     Researcher, Japan Agency for Marine-Earth Science and Technology, Japan
Apr/2007―Aug/2007      Senior Researcher, Istituto Internazionale di Vulcanologia (INGV), Italy
Apr/2004―Mar/2007      JSPS Postdoctoral Fellow, Kyoto University, Japan
Jul/2002―Mar/2004       Postdoctoral Fellow, ETH Zurich, Switzerland
 


Publications (peer-reviewed papers)

 

    1.    Bedford, J.D., Faulkner, D.R. Allen, M.J., Hirose, T., (2021) The stabilizing effect of high pore-fluid pressure along subduction megathrust faults: Evidence from friction experiments on accretionary sediments from the Nankai Trough, Earth and Planetary Science Letters, 574, 117161.  https://doi.org/10.1016/j.epsl.2021.117161

    2.    Mizoguchi, K., Uehara, S., Hirose, T., and Iizuka, S., (2021) Frictional stability of porous pyroclastic rock under subsurface low pressure and implications for shallow seismicity, Earth, Planets and Space, 73:101, https://doi.org/10.1186/s40623-021-01419-y

    3.    Hirose, T., Hamada, Y., Tanikawa, W., Kamiya, N., Yamamoto, Y., Tsuji, T., Kinoshita, M., Heuer, V., Inagaki, F., Morono, Y., Kubo, Y., (2021) High Fluid Pressure Patches beneath the Décollement: A Potential Source of Slow Earthquakes in the Nankai Trough off Cape Muroto. Journal of Geophysical Research: Solid Earth, 126,6. https://doi.org/10.1029/2021JB021831

    4.    Park, Y., Hirose, T., Ree, J.H., (2021) Carbonate fault mirrors with extremely low frictional aging rates: A possible source of slow earthquakes, Geophysical Research Letters, 48, 11. https://doi.org/10.1029/2021GL093749

    5.    Kitamura, M., Hirose, T., Lei, X., (2021) Mechanical Weakness of the Nankai Accretionary Prism: Insights from Vp Measurements of Drill Cuttings, Geochemistry, Geophysics, Geosystems, 22, 5. https://doi.org/10.1029/2020GC009536

    6.    V.B. Heuer, F. Inagaki, Y. Morono, Y. Kubo, A.J. Spivack, B. Viehweger, T. Treude, F. Beulig, F. Schubotz, S. Tonai, S. Bowden, M. Cramm, S. Henkel, T. Hirose, K. Homola, T. Hoshino, A. Ijiri, H. Imachi, N. Kamiya, M. Kaneko, L. Lagostina, H. Manners, H.-L. McClelland, K. Metcalfe, N. Okutsu, D.Pan, M.J. Raudsepp, J. Sauvage, M.-Y. Tsang, D.T. Wang, E. Whitaker, Y. Yamamoto, K. Yang, L.Maeda, R.R. Adhikari, C. Glombitza, Y. Hamada, J. Kallmeyer, J. Wendt, L. Wörmer, Y. Yamada, M. Kinoshita, K.-U. Hinrichs, (2020) Temperature limits to deep subseafloor life in the Nankai Trough subduction zone, Science, 370, 1230-1234. DOI: 10.1126/science.abd7934

    7.    Rempe, M., Di Toro, G., Mitchell, T., Smith, S., Hirose, T., & Renner, J., (2020). Influence of effective stress and pore-fluid pressure on fault strength and slip localization in calcite gouges. Journal of Geophysical Research, https://doi.org/10.1029/2020JB019805

    8.    Lin, W., Hirose, T., Tadai, O., Tanikawa, W., Ishitsuka, K., Yang, X. (2020). Thermal conductivity profile in the Nankai accretionary prism at IODP NanTroSEIZE Site C0002: estimations from high-pressure experiments using input site sediments. Geochemistry, Geophysics, Geosystems, 21, e2020GC009108. https://doi.org/10.1029/2020GC009108.

    9.    Seyler, C., Kirkpatrick, J., Savage, H, Hirose, T., & Faulkner, D. (2020).Rupture to the trench? Frictional properties and fracture energy of incoming sediments at the Cascadia subduction zone, accepted to Earth and Planetary Science Letters. Volume 546, 15. https://doi.org/10.1016/j.epsl.2020.116413

    10.  Kanagawa, K., Murayama, H., Sugita, A., Takahashi, M., Sawai, M., Furukawa, N., & Hirose, T. (2020). Weakening of quartz rocks at subseismic slip rates due to frictional heating, but not to lubrication by wear materials of hydrated amorphous silica or silica gel. Tectonophysics, 784, 228429. https://doi.org/10.1016/j.tecto.2020.228429

    11.  Han, R., C-M. Kim, S. Woo, G-Y. Jeong & Hirose, T. (2020). Structural records and mechanical characteristics of seismic slip along an active fault crosscutting unconsolidated Quaternary sediments: Suryum fault, SE Korea. Geosciences Journal, 1-11. http://dx.doi.org/10.1007/s12303-019-0037-4

    12.  Kitamura, M., Kitajima, H., Sone, H., Hamada, Y., & Hirose, T. (2019). Strength profile of the inner Nankai accretionary prism at IODP site C0002. Geophysical Research Letters, 46, 10,791–10,799. https://doi.org/10.1029/ 2019GL083732

    13.  Kim, J.H., Ree, J.H., Choi, J.H., Chauhan, N., Hirose, T., & Kitamura, M. (2019). Experimental Investigations on Dating the Last Earthquake Event using OSL Signals of Quartz from Fault Gouges. Tectonophysics, 769. https://doi.org/10.1016/j.tecto.2019.228191

    14.  Tsang, M.-Y., Bowden, S.A., Wang, Z., Mohammed, A., Tonai, S., Muirhead, D., Yang, K., Yamamoto, Y., Kamiya, N., Okutsu, N., Hirose, T., Kars, M., Schubotz, F., Ijiri, A., Yamada, Y., Kubo, Y., Morono, Y., Inagaki, F., Heuer, V.B., Hinrichs, K.-U., (2019) Hot fluids, burial metamorphism and thermal histories in the underthrust sediments at IODP 370 site C0023, Nankai Accretionary Complex, Marine and Petroleum Geology, 112, 104080. https://doi.org/10.1016/j.marpetgeo.2019.104080.

    15.  Brodsky, E.E., Mori, J. J., Anderson, L., Chester, F. M., Conin, M., Dunham, E. M., Eguchi, N., Fulton, P., Hino, R., Hirose, T., Ikari, M., Ishikawa, T., Jeppson, T., Kano, Y., Kirkpatrick, J., Kodaira, S., Lin, W., Nakamura, Y., Rabinowitz, H, Regalla, C., Remitti, F., Rowe, C., Saffer, D., Saito, S., Sample, J., Sanada, Y., Savage, H., Sun, T., Toczko, S., Ujiie, K., Wolfson-Schwehr, M. & Yang, T. (2020). The State of Stress on the Fault before, during and after a Major Earthquake. Annual Reviews in Earth & Planetary Sciences, 48:2.1–2.26. https://doi.org/10.1146/annurev-earth-053018-060507.

    16.  Y. Hamada, T. Hirose, S. Saito, K. Moe, H. Wu, W. Tanikawa, Y. Sanada, Y. Nakamura, Y. Shimmoto, T. Sugihara, W. Lin, N. Abe, L. Gupta, M. Kinoshita, Y. Masaki, S. Nomura, Y. Yamada & NGHP Expedition 02 JAMSTEC Science Team, Equivalent formation strength as a proxy tool for exploring the location and distribution of gas hydrates, Marine and Petroleum Geology, https://doi.org/10.1016/j.marpetgeo.2018.06.010

    17.  T. Hirose, W. Tanikawa, Y. Hamada, W. Lin, K. Hatakeda, O. Tadai, H. Y. Wu, S. Nomura, N. Abe, L. P. Gupta, T. Sugihara, Y. Masaki, M. Kinoshita, Y. Yamada, and NGHP Expedition 02 JAMSTEC Science Team, 2019, Strength characteristics of sediments from a gas hydrate deposit in the Krishna–Godavari Basin on the eastern margin of India, Marine and Petroleum Geology, 108, 348-355, https://doi.org/10.1016/j.marpetgeo.2018.08.017

    18.  W. Tanikawa, T. Hirose, Y. Hamada, L. Gupta; N. Ahagon, Y. Masaki, N. Abe, H. Wu, T. Sugihara, S. Nomura; W. Lin, M. Kinoshita, Y. Yamada, Porosity, permeability, and grain size of sediment cores from gas-hydrate-bearing sites and the implication of overpressure in shallow argillaceous formations, results from National Gas Hydrate Program Expedition 02, Krishna-Godavari Basin, India, Marine and Petroleum Geology, https://doi.org/10.1016/j.marpetgeo.2018.11.014 .

    19.  Kinoshita, M., A. Ijiri, S. Haraguchi, F.J. Jiménez-Espejo, N. Komai, H. Suga, T. Sugihara, W. Tanikawa, T. Hirose, Y. Hamada, L.P. Gupta, N. Ahagon, Y. Masaki, N. Abe, H.Y. Wu, S. Nomura, W. Lin, Y. Yamamoto, Y. Yamada and NGHP Expedition JAMSTEC Science Team, Constraints on the fluid supply rate into and through gas hydrate reservoir systems as inferred from pore-water chloride and in situ temperature profiles, Krishna-Godavari Basin, India, Marine and Petroleum Geology, https://doi.org/10.1016/j.marpetgeo.2018.12.049

    20.  Gupta, L.P., W. Tanikawa, Y. Hamada, T. Hirose, N. Ahagon, T. Sugihara, N. Abe, S. Nomura, Y. Masaki, H. Y. Wu, W. Lin, M. Kinoshita, Y. Yamada, NGHP Expedition 02 JAMSTEC Science Team, Examination of gas hydrate-bearing deep ocean sediments by X-ray Computed Tomography and verification of physical property measurements of sediments, Marine and Petroleum Geology, https://doi.org/10.1016/j.marpetgeo.2018.05.033

    21.  Ota, Y., H. Kawahata, J. Kuroda, A.Yamaguchi, A. Suzuki, D. Araoka, A. Abe-Ouchi, Y. Yamada, A. Ijiri, T. Kanamatsu, M. Kinoshita, M. Kyaw, W. Lin, S. Saito, Y. Sanada, Y. Hamada, Y. Nakamura, Y. Shinmoto, H. Wu, N. Ahagon, K. Aoike, K. Iijima, H. Machiyama, M. L. Tejada, K. Umetsu, Y. Usui, Y. Yamamoto, S. Yoshikawa, F. Jimenez-Espejo, S. Haraguchi, N. Komai, H. Suga, N. Abe, L. Gupta, T. Hirose, Y. Masaki, S. Nomura, T. Sugihara, W. Tanikawa, Y. Kubo, L. Maeda, S. Toczko. (2019) Indian Monsoonal Variations During the Past 80 Kyr Recorded in NGHP02 Hole 19B, Western Bay of Bengal: Implications From Chemical and Mineral Properties. Geochemistry Geophysics Geosystems, 20, 148-165. doi: 10.1029/2018GC007772

    22.  Hamada, Y., T. Hirose, A. Ijiri, Y. Yamada, Y. Sanada, S. Saito, N. Sakurai, T. Sugihara, T. Yokoyama, T. Saruhashi, T. Hoshino, N. Kamiya, S. Bowden, M. Cramm, S. Henkel, K. Homola, H. Imachi, M. Kaneko, L. Lagostina, H. Manners, H.L. McClelland, K. Metcalfe, N. Okutsu, D. Pan, M.J. Raudsepp, J. Sauvage, F. Schubotz, A. Spivack, S. Tonai, T. Treude, M.Y. Tsang, B. Viehweger, D.T. Wang, E. Whitaker, Y. Yamamoto, K. Yang, M. Kinoshita, L. Maeda, Y. Kubo, Y. Morono, F. Inagaki & V.B. Heuer, (2018) In-situ mechanical weakness of subducting sediments beneath a plate boundary décollement in the Nankai Trough, Progress in Earth and Planetary Science, 5:70. https://doi.org/10.1186/s40645-018-0228-z

    23.  Yamamoto, Y., S. Chiyonobu, T. Kanamatsu, N. Ahagon, K. Aoike, N. Kamiya, T. Ojima, T. Hirose, T. Sugihara, S. Saito, M. Kinoshita, Y., Kubo, Y. Yamada, NGHP02 Scientists, (2019) Repeated large-scale mass-transport deposits and consequent rapid sedimentation in the western part of the Bay of Bengal, IndiaGeological Society, London, Special Publications, 477, 183-193. https://doi.org/10.1144/SP477.12

    24.  Tanikawa, W., G. Uramoto, Y. Hamada, M. Murayama, Y. Yamamoto, T. Hirose, O. Tadai, K. Tanaka, H. Ozaki, M. Yoneda, and H. Tokuyama, (2019) Provenance of submerged stone pillars in an earthquake and typhoon hazard zone, coastal Tosashimizu, southwest Japan: A multidisciplinary geological approach, Marine Geology, 415, 105962, doi.org/10.1016/j.margeo.2019.105962.

    25.  Wallace, P.A., S.H. De Angelis, A.J. Hornby, J.E. Kendrick, S. Clesham, F.W. von Aulock, A. Hughes, J.E.P. Utley, T. Hirose, D.B. Dingwell, Y. Lavallee, (2019) Frictional melt homogenisation during fault slip: Geochemical, textural and rheological fingerprints, Geochimica et Cosmochimica Acta, 255, 265-288, doi.org/10.1016/j.gca.2019.04.010.

    26.  Tonai, S., Y. Kubo, M.Y. Tsang, S. Bowden, K. Ide, T. Hirose, N. Kamiya, Y. Yamamoto, K. Yang, Y. Yamada, Y. Morono, V. Heuer and F. Inagaki, (2019) A new method for quality control of geological cores by X-ray Computed Tomography and its application in IODP Expedition 370, Front. Earth Sci., 7, 117, doi.org/10.3389/feart.2019.00117.

    27.  Han, R., J-S. Kim, C-M. Kim, T. Hirose, J. O. Jeong, and G. Y. Jeong, (2019) Dynamic weakening of ring faults and catastrophic caldera collapses, Geology, 47. 107-110, https://doi.org/10.1130/G45687.1

    29.  Hamada, Y., M. Kitamura, Y. Yamada, Y. Sanada, T. Sugihara, S. Saito, K. Moe, and T. Hirose, (2018) Continuous depth profile of the rock strength in the Nankai accretionary prism based on drilling performance parameters, Scientific Reports, 8, DOI:10.1038/s41598-018-20870-8.

    32.  Kitajima, H., D. Saffer, H Sone, H. Tobin, and T. Hirose, (2017) In-situ stress and pore pressure in a deep interior of the Nankai accretionary wedge, IODP Site C0002, Geophys. Res. Lett., 44, https://doi.org/10.1002/2017GL075127.

    33.  Sawai, M., A.R. Niemeijer, T. Hirose, and C.J. Spiers, (2017) Frictional properties of JFAST core samples and implications for slow slip events at the Tohoku subduction zone, Geophys. Res. Lett., 44, 8822–8831, doi:10.1002/2017GL073460.

    35.  Lee, S.K., R. Han, E.J. Kim, G.Y. Jeong, H. Khim & T. Hirose, (2017) Quasi-equilibrium melting of quartzite upon extreme friction, Nature Geoscience, 10, 436–441, doi:10.1038/ngeo2951.

    36.  Kitamura M., and Hirose T., (2017) Strength determination of rocks by using indentation tests with a spherical indenter, Journal of Structural Geology, 98, 1-11, doi.org/10.1016/j.jsg.2017.03.009.

    37.  Rempe M., Smith S., Mitchell M., Hirose T., & Di Toro G., (2017) The effect of water on strain localization in calcite fault gouge, Journal of Structural Geology, 97, 104-117, http://doi.org/10.1016/j.jsg.2017.02.007.

    38.  Brown K., Poeppe, D., Josh M., Sample J., Even E., Saffer D., Tobin H., Hirose T., Kulongoskih J.T., Toczko S., Maeda L., and the IODP Expedition 348 Shipboard Party (2017), The action of water films at A-scales in the earth: implications for the Nankai subduction systems, Earth and Planetary Science Letters, 463, 266-276. http://dx.doi.org/10.1016/j.epsl.2016.12.042

    39.  Mizoguchi, K., and T. Hirose, (2016), Transient water adsorption on newly formed fault gouge and its relation to frictional heating, Geophys. Res. Lett., 43, doi:10.1002/2016GL069776.

    40.  Sawai, M., A. R. Niemeijer, O. Plümper, T. Hirose, and C. J. Spiers (2016), Nucleation of frictional instability caused by fluid pressurization in subducted blueschist, Geophys. Res. Lett., 43, doi:10.1002/2015GL067569.

    41.  Wada, J.-i., K. Kanagawa, H. Kitajima, M. Takahashi, A. Inoue, T. Hirose, J.-i. Ando, and H. Noda (2016), Frictional strength of ground dolerite gouge at a wide range of slip rates, J. Geophys. Res., 21, 2961–2979,doi:10.1002/2015JB012013.

    42.  Lavallée, Y., T. Hirose, J.E. Kendrick, K.-U. Hess and D.B. Dingwell, (2015) Fault rheology beyond frictional melting, PNAS, 112, no.30, 9276-9280. doi/10.1073/pnas.1413608112.

    43.  Oohashi, K., T. Hirose, M. Takahashi, and W. Tanikawa, (2015) Dynamic weakening of smectite-bearing faults at intermediate velocities: Implications for subduction zone earthquakes, J. Geophys. Res. Solid Earth, 120, 1572–1586, doi:10.1002/2015JB011881.

    44.  Hornby, A., J.E. Kendrick, O.D. Lamb, T. Hirose, S. De Angelis, F.W. Aulock, K. Umakoshi, T. Miwa, S.H. De Angelis, F.B. Wadsworth, K.-U. Hess, D.B. Dingwell, and Y. Lavallée, (2015) Spine growth and seismogenic friction at Mt Unzen, Japan, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2014JB011660.

    45.  Kameda, J., Shimizu, M., Ujiie, K., Hirose, T., Ikari, M., Mori, J., Oohashi, K. & Kimura, G. (2015) Pelagic smectite as an important factor in tsunamigenic slip along the Japan Trench. Geology, 43(2), 155-158. https://doi.org/10.1130/G35948.1

    46.  Suzuki, K., Kato, S., Shibuya, T., Hirose, T., Fuchida, S., Kumar, V. R., and Urabe, T. (2015) Development of Hydrothermal and Frictional Experimental Systems to Simulate Sub-seafloor Water–Rock–Microbe Interactions. In Subseafloor Biosphere Linked to Hydrothermal Systems, pp. 71-85, Springer Japan. DOI: 10.1007/978-4-431-54865-2

    47.  Suzuki, K., Shibuya, T., Yoshizaki, M., & Hirose, T. (2015) Experimental Hydrogen Production in Hydrothermal and Fault Systems: Significance for Habitability of Subseafloor H2 Chemoautotroph Microbial Ecosystems. In Subseafloor Biosphere Linked to Hydrothermal Systems, pp. 87-94, Springer Japan. https://doi.org/10.1007/978-4-431-54865-2_8

    48.  Han, R., T. Hirose, G. Y. Jeong, J.-I. Ando,and H. Mukoyoshi (2014), Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications, Geophys. Res. Lett., 41, 5457–5466, doi:10.1002/2014GL061246.

    49.  Tanikawa W., H.Mukoyoshi, W. Lin, T. Hirose, and A. Tsutsumi (2014), Pressure dependence of fluid transport properties of shallow fault systems in the Nankai subduction zone, Earth, Planets and Space, 66. doi:10.1186/1880-5981-66-90.

    50.  Sawai, M., T. Hirose, and J. Kameda, (2014), Frictional properties of incoming pelagic sediments at the Japan Trench: implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake, Earth, Planets and Space, 66:65. doi:10.1186/1880-5981-66-65.

    51.  Lavallée, Y., T. Hirose, J.E. Kendrick, S. DeAngelis, L. Petrakova, A.J. Hornby, and D.B. Dingwell (2014), A frictional law for volcanic ash gouge, Earth Planet. Sci. Lett., 400, 177-183, doi:10.1016/j.epsl.2014.05.023.

    52.  Kendrick, J. E., Lavallée, Y., Hirose, T., Di Toro, G., Hornby, A.J., De Angelis, S. and Dingwell, D.B., (2014) Volcanic drumbeat seismicity caused by stick-slip motion and magmatic frictional melting, Nature Geoscience 7, 438–442 (2014) doi:10.1038/ngeo2146.

    53.  French, M. E., H. Kitajima, J. S. Chester, F. M. Chester, and T. Hirose (2014), Displacement and dynamic weakening processes in smectite-rich gouge from the Central Deforming Zone of the San Andreas Fault, J. Geophys. Res. Solid Earth, 119, doi:10.1002/2013JB010757.

    55.  Oohashi, K., T. Hirose, and T. Shimamoto, (2013) Graphite as a lubricating agent in fault zones: An insight from low- to high-velocity friction experiments on a mixed graphite-quartz gouge, J. Geophys. Res., 118, 2067–2084, doi:10.1002/jgrb.50175. Selected as “JGR Journal Highlight”

    56.  Tanikawa, W., Hirose, T., Mukoyoshi, H., Tadai, O., and Lin, W., (2013). Fluid transport properties in sediments and their role in large slip near the surface of the plate boundary fault in the Japan Trench. Earth and Planetary Science Letters, 382, 150-160. https://doi.org/10.1016/j.epsl.2013.08.052

    57.  Ohtomo, Y., Ijiri, A., Ikegawa, Y., Tsutsumi, M., Imachi, H., Uramoto, G., Hoshino, T., Morono, Y., Sakai, S., Saito, U., Tanikawa, W., Hirose, T., and Inagaki, F. (2013) Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system. Frontiers in microbiology, 4, doi: 10.3389/fmicb.2013.00361.

    58.  Fulton, P. M., Brodsky, E. E., Kano, Y., Mori, J., Chester, F., Ishikawa, T., Harris, R.N., Lin, W., Eguchi, N., Toczko, S. and the Exp. 343/343T and KR13-08 Scientists (Hirose included), (2013) Low coseismic friction on the Tohoku-oki fault determined from temperature measurements. Science, 342, 1214-1217.

    59.  Ujiie, K., Tanaka, H., Saito, T., Tsutsumi, A., Mori, J. J., Kameda, J., Brodsky, E. E., Chester, F. M., Eguchi, N., Toczko, S. and Expedition 343 and 343T Scientists (Hirose included), (2013) Low coseismic shear stress on the Tohoku-oki megathrust determined from laboratory experiments. Science, 342, 1211-1214.

    60.  Chester, F. M., Rowe, C., Ujiie, K., Kirkpatrick, J., Regalla, C., Remitti, F., Moore, J. C., Toy, V., Wolfson-Schwehr, M., Bose, S., Kameda, J., Mori, J. J., Brodsky, E. E., Eguchi, E., Toczko, S. and Expedition 343 and 343T Scientists (Hirose included), (2013) Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-oki earthquake. Science, 342, 1208-1211.

    61.  Lin, W., Conin, M., Moore, J. C., Chester, F. M., Nakamura, Y., Mori, J. J., Anderson, L., Brodsky, E., Eguchi, N., and Expedition 343 Scientists (Hirose included), (2013) Stress state in the largest displacement area of the 2011 Tohoku-Oki earthquake. Science, 339, 687-690. DOI: 10.1126/science.1229379.

    62.  Noguchi, T., Tanikawa, W., Hirose, T., Lin, W., Kawagucci, S., Yoshida-Takashima, Y., Honda, M., Takai, K., Kitazato, K., and Okamura, K., (2012) Dynamic process of turbidity generation triggered by the 2011 Tohoku-Oki earthquake. Geochem. Geophys. Geosyst. 13, Q11003, doi:10.1029/2012GC004360.

    63.  Boutareaud, S., T. Hirose, M. Andréani, M. Pec, D.-G. Calugaru, A.-M. Boullier, and M.-L. Doan (2012), On the role of phyllosilicates on fault lubrication: Insight from micro- and nanostructural investigations on talc friction experiments, Journal of Geophysical Research, 117, B08408, doi:10.1029/2011JB009006.

    64.  Han, R., Hirose, T (2012) Clay clast aggregates in fault gouge: An unequivocal indicator of seismic faulting at shallow depths? Journal of Structural Geology, 43, 92-99, http://dx.doi.org/10.1016/j.jsg.2012.07.008.

    65.  Kitamura, M., H. Mukoyoshi, P. M. Fulton, and T. Hirose (2012) Coal maturation by frictional heat during rapid fault slip, Geophysical Research Letters, 39, L16302, doi:10.1029/2012GL052316.

    66.  Tanikawa, W., H. Mukoyoshi, O. Tadai, T. Hirose, A. Tsutsumi, and W. Lin (2012), Velocity dependence of shear-induced permeability associated with frictional behavior in fault zones of the Nankai subduction zone, Journal of Geophysical Research, 117, B05405, doi:10.1029/2011JB008956.

    67.  Lavallee Y., Mitchell T.M., Heap J.M., Vasseur J., Hess K., Hirose T., Dingwell B.D., (2012) Experimental generation of volcanic pseudotachylites: constraining rheology, Journal of Structural Geology, 38, 222-233, doi:10.1016/j.jsg.2012.02.001.

    68.  Hirose T., K. Mizoguchi, and T. Shimamoto, (2012) Wear processes in rocks at slow to high slip rates, Journal of Structural Geology, 38, 102-116, doi:10.1016/j.jsg.2011.12.007.

    69.  Oohashi, K., T. Hirose, K. Kobayashi and T. Shimamoto (2012) The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: origins and implications for fault creep, Journal of Structural Geology, 38, 39-50, doi:10.1016/j.jsg.2011.10.011.

    70.  De Paola, N., Chiodini G., Hirose T., Cardellini C., Caliro C. and Shimamoto T., (2011) The geochemical signature caused by earthquake propagation in carbonate-hosted faults, Earth and Planetary Science Letters, 310, 225-232, doi:10.1016/j.epsl.2011.09.001.

    71.  Ferri, F., G. Di Toro, T. Hirose, R. Han, H. Noda, T. Shimamoto, M. Quaresimin, and N. de Rossi (2011) Low- To High-Velocity Frictional Properties Of The Clay-Rich Gouges From The Slipping Zone Of The 1963 Vaiont Slide (Northern Italy), Journal of Geophysical Research, 116, B09208, doi:10.1029/2011JB008338.

    72.  Faulkner D.R., Mitchell T., Behnsen J., Hirose T. and Shimamoto T., (2011) Stuck in the smud? Earthquake nucleation and propagation through accretionary forearcs, Geophysical Research Letters, 38, L18303, doi:10.1029/2011GL048552.

    73.  Hirose T., Kawagucci S. and Suzuki K., (2011) Mechanoradical H2 generation during simulated faulting: Implications for an earthquake-driven dark energy biosphere, Geophysical Research Letters, 38, L17303, doi:10.1029/2011GL048850.

    74.  Lin W., Tadai O., Hirose T., Tanikawa W., Takahashi M., Mukoyoshi H. and Kinoshita M., (2011) Thermal conductivities under high pressure in core samples from IODP NanTroSEIZE drilling site C0001, Geochemistry, Geophysics, Geosystems, 12, Q0AD14, doi:10.1029/2010GC003449.

    75.  Blackman D.K., Ildefonse B., John B.E., Ohara Y., Miller D.J. and IODP 304-305 Science Party (Hirose included), (2011) Drilling Constraints on Lithospheric Accretion and Evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N, Journal of Geophysical Research, 116, B07103, doi:10.1029/2010JB007931.

    76.  Noda H., Kanagawa K., Hirose T. and Inoue A., (2011) Frictional experiments at intermediate slip rates with controlling temperature, Journal of Geophysical Research, 116, B07306, doi:10.1029/2010JB007945.

    77.  Oohashi, K., T. Hirose and T. Shimamoto, (2011) Shear-induced graphitization of carbonaceous materials during seismic fault motion: experiments and possible implications for fault mechanics, Journal of structural Geology, 33, 1122-1134, doi:10.1016/j.jsg.2011.01.007.

    78.  Togo T., T. Shimamoto, S. Ma and T. Hirose (2011) High-velocity frictional behavior of Longmenshan fault gouge from Hongkou outcrop, Sichuan, China and its implications for dynamic weakening of fault during the 2008 Wenchuan earthquake, Earthquake Science, 24, 267-281, doi:10.1007/s11589-011-0790-6.

    79.  G. Di Toro, R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco and T. Shimamoto, (2011) Fault lubrication during earthquakes, Nature, 471,494-498, doi:10.1038/nature09838.

    80.  Han R., Hirose T., Shimamoto T., Lee Y. and Ando J. (2011) Granular nanoparticles lubricate faults during seismic slip, Geology, 39(6) 599-602, doi:10.1130/G31842.1.

    81.  De Paola, N., T. Hirose, T. Mitchell, G. Di Toro, C. Viti, and T. Shimamoto, (2011) Fault lubrication and earthquake propagation in thermally unstable rocks, Geology, 39(1), 35-38, doi:10.1130/G31398.1.

    82.  Viti C., and T. Hirose, (2010), Thermal decomposition of serpentine during coseismic faulting: nanostructures and mineral reactions, Journal of Structural Geology, 32(10), 1476-1484. https://doi.org/10.1016/j.jsg.2010.09.009

    83.  Nielsen, S., P. Mosca, G. Giberti, G. Di Toro, T. Hirose, and T. Shimamoto, (2010), On the transient behavior of frictional melt during seismic slip, Journal of Geophysical Research, 113, B01308, doi:10.1029/2009JB007020.

    84.  Ferri, F., G. Di Toro, T. Hirose, and T. Shimamoto, (2010) Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges, Terra Nova, 22(5), 347-353. DOI: 10.1111/j.1365-3121.2010.00955.x

    85.  Tanikawa, W., M. Sakaguchi, O. Tadai, and T. Hirose, (2010) Influence of fault slip rate on shearinduced permeability, Journal of Geophysical Research, 115, B07412, doi:10.1029/2009JB007013.

    86.  Han, R., T. Hirose, and T. Shimamoto, (2010) Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates, Journal of Geophysical Research, 115, B03412, doi:10.1029/2008JB006136.

    87.  Matsumoto, D., Shimamoto, T., Hirose, T., Gunatilake, J., Wickramasooriya, A., DeLile, J., Young, S., Rathnayake, C., Ranasooriya, J. and Murayama, M., (2010) Thickness and grain-size distribution of the 2004 Indian Ocean tsunami deposits in Periya Kalapuwa Lagoon, eastern Sri Lanka, Sedimentary Geology, 230, 95-104. https://doi.org/10.1016/j.sedgeo.2010.06.021

    88.  Stunitz H., Keulenb N., Hirose T., and Heilbronnerb R., (2010) Grain size distribution and microstructures of experimentally sheared granitoid gouge at coseismic slip rates ? criteria to distinguish seismic and aseismic faults? Journal of Structural Geology, 32, 59-69, doi:10.1016/j.jsg.2009.08.002.

    89.  Del Gaudio P., Di Toro G., Han R., Hirose T., Nielsen S., Shimamoto T., Cavallo A., (2009) Frictional melting of peridotite and seismic slip. Journal of Geophysical Research, 114, B06306, doi:10.1029/2008JB005990.

    90.  Mizoguchi K., Hirose T., Shimamoto T. and Fukuyama E., (2009) High-velocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault, southwest Japan. Tectonophysics, 471, 3-4, 285-296. https://doi.org/10.1016/j.tecto.2009.02.033

    91.  Viti C. and Hirose T., (2009) Dehydration reactions and micro/nanostructures in experimentally-deformed serpentinites. Contributions to Mineralogy and Petrology, 157, 327-338, DOI 10.1007/s00410-008-0337-6.

    93.  Sato K., Kumagai H., Hirose T., Tamura H., Mizoguchi K. and Shimamoto T., (2009) Experimental study for noble gas release and exchange under high-speed frictional melting. Chemical Geology, 266, 1-2, 96-103. DOI: 10.1016/j.chemgeo.2008.12.017

    94.  Mizoguchi K., Hirose T., Shimamoto T. and Fukuyama E., (2009) Fault Heals Rapidly after Dynamic Weakening. Bulletin of Seismological society of America, 95(5), 1666-1673, doi: 10.1785/0120080325.

    95.  Michibayashi K., Hirose T., Nozaka T., Harigane Y., Escartin J., Delius H., Linek M. and Ohara Y., (2008) Hydration due to high-T brittle failure within in situ oceanic crust, 30°N Mid-Atlantic Ridge. Earth and Planetary Science Letters, 275, 348-354. https://doi.org/10.1016/j.epsl.2008.08.033

    96.  Hirose T., and Hayman N., (2008) Structure, permeability, and strength of a fault zone in the footwall of an oceanic core complex, the Central Dome of the Atlantis Massif, Mid-Atlantic Ridge, 30N. Journal of Structural Geology, 30, 1060-1071, doi:10.1016/j.jsg.2008.04.009.

    97.  Mizoguchi K., Hirose T., Shimamoto T. and Fukuyama E., (2008) Internal structure and permeability of the Nojima fault, southwest Japan. Journal of Structural Geology, 30, 513-524, doi:10.1016/j.jsg.2007.12.002.

    98.  Nielsen S., Di Toro G., Hirose T., and Shimamoto T., (2008) Frictional melts and seismic slip. Journal of Geophysical Research, 113, B01308, doi:10.1029/2007JB005122.

    99.  Hirose T. and Bystricky M., (2007) Extreme dynamic weakening of faults during dehydration by coseismic shear heating. Geophysical Research Letters, 34, L14311, doi:10.1029/2007GL030049.

    100.  Han R., Shimamoto T., Hirose T., Ree J.H. and Ando J., (2007) Ultra-low friction of carbonate faults caused by thermal decomposition during seismic slip. Science, 316, 878-881. DOI: 10.1126/science.1139763

    101.  Mizoguchi K., Hirose T., Shimamoto T. and Fukuyama E., (2007) Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake. Geophysical Research Letters, 34, L01308, doi:10.1029/2006GL027931.

    102.  Ildefonse, B., Blackman, D. K., John, B.E., Ohara, Y., Miller, D. J., MacLeod, C. J. and IODP Expeditions 304/305 Science Party (Hirose included), (2007) Oceanic Core Complexes and crustal accretion at slow-spreading ridges. Geology, 35, 623-626.

    103.  Di Toro G., Hirose T., Nielsen S. and Shimamoto T., (2006) Relating High-Velocity Rock-Friction Experiments to Coseismic Slip in the Presence of Melts. In Radiated Energy and the Physics of Earthquake Faulting, edited by R. Abercrombie, A. McGarr, H. Kanamori, and G. Di Toro, AGU Geophysical Monograph, 170, 121-134, Washington, D. C. https://doi.org/10.1029/170GM13

    104.  Hirose T., Bystricky M., Stünitz H. and Kunze K., (2006) Semi-brittle flow during dehydration of lizardite-chrysotile serpentinite deformed in torsion: Implications for the rheology of oceanic lithosphere. Earth and Planetary Science Letters, 249, 484-493, doi: 10.1016/j.epsl.2006.07.014.

    105.  Mizoguchi K., Hirose T., Shimamoto T. and Fukuyama E., (2006) Moisture-related weakening and strengthening of a fault activated at seismic slip rates. Geophysical Research Letters, 33, L16319, doi:10.1029/2006GL026980.

    106.  Di Toro G., Hirose T., Nielsen S., Pennacchioni G., Shimamoto T., (2006) Natural and experimental evidence of melt lubrication of faults during earthquakes. Science, 311, 647-649. DOI: 10.1126/science.1121012

    107.  Hirose T. and Shimamoto T., (2005) Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research, 110(B5), B05202, 10.1029/2004JB003207.

    108.  Hirose T. and Shimamoto T., (2005) Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes. Bulletin of Seismological society of America, 95(5), 1666-1673. DOI: 10.1785/0120040131

    110.  Tsutsumi A., Nishino S., Mizoguchi K., Hirose T., Uehara S., Sato K., Tanikawa, W. and Shimamoto T., (2004) Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, Southwest Japan. Tectonophysics, 379, 93-108. https://doi.org/10.1016/j.tecto.2003.10.007

    111.  Hirose T. and Shimamoto T., (2003) Fractal dimension of molten surfaces as a possible parameter to infer the slip-weakening distance of faults from natural pseudotachylytes. Journal of Structural Geology, 25, 1569-1574. https://doi.org/10.1016/S0191-8141(03)00009-9

    114.  Nakamura N., Hirose T. and Borradaile G.J., (2002) Laboratory verification of submicron magnetite production in pseudotachylytes: relevance for paleointensity studies. Earth and Planetary Science Letters, 201, 13-18. DOI: 10.1016/S0012-821X(02)00704-5