ALON/ALAT, Period, Apogee/Perigee
ALON/ALAT express the direction of the satellite spin axis.
ALON=0 indicates the direction from the center of the earth
to perigee and ALON=180 indicates the derection from the center
of the earth to apogee.
ALAT has the positive sign when the direction of the spin axis
indicates over the orbit plane and has negative sign when the
direction of the spin axis indicates under the orbit plane.
^ Propelling power
|
+-------------+ Ex. When ALON/ALAT=0/0
| AO-40 | and AO-40 situates on apogee,
+-------------+ then the beam turn to the earth.
| ^
| ^^^ Motor
| (Spin axis)
v
Antenna beam
Motor
vvv (Spin axis)
v
+-------------+ Ex. When ALON/ALAT=180/0
| AO-13 | and AO-13 situates on apogee,
+-------------+ then the beam turn to the earth.
| |
| v
| Propelling power
v
Antenna beam
The distance between the earth and the apogee, perigee,
and a period of AO-40 are able to calculate with the
Keplerian Equation "t-e*sin(t)=MA".
This algorithm are the following. 'e=0.8149168' is
the eccentricity in the following keplerian set.
Satellite: AO-40
Catalog number: 26609
Epoch time: 01143.75467560
Element set: 78
Inclination: 5.2066 deg
RA of node: 190.8403 deg
Eccentricity: 0.8149168
Arg of perigee: 272.5771 deg
Mean anomaly: 7.8201 deg
Mean motion: 1.27026844 rev/day
Decay rate: -3.85e-06 rev/day^2
Epoch rev: 259
Checksum: 298
(1) M=MA*2*3.14/256
(2) to=M{e*sin(M){0.5*e^2*sin(2M)
(3) mo=to-e*sin(to)
(4) dto=(M-mo)/(1-e*cos(to))
(5) t1=to+dto
(6) m1=t1-e*sin(t1)
(7) dt1=(M-m1)/(1-e*cos(t1))
(8) t2=t1+dt1
(9) m2=t2-e*sin(t2)
(10) dt2=(M-m2)/(1-e*cos(t2))
(11) t3=t2+dt2
(12) tan(t3/2)
(13) u=root((1+e)/(1-e))*tan(t3/2)
(14) s=2*arctan(u)
(15) p=24*3600/n
(16) 4*3.14^2*(a^3/p^2)=G*Q
(17) a=(((G*Q*p^2)/(4*3.14^2))^(1/3))*10^9
(18) r0=a(1-e^2)/(1+e*cos(s))
(19) r=r0-6371
Then,
Period : 18 hours and 54 minutes
Apogee : 58,985Km
Perigee : 291Km
Back to Top
Back to Home Page