ALON/ALAT, Period, Apogee/Perigee


ALON/ALAT express the direction of the satellite spin axis.

ALON=0 indicates the direction from the center of the earth
to perigee and ALON=180 indicates the derection from the center
of the earth to apogee.

ALAT has the positive sign when the direction of the spin axis
indicates over the orbit plane and has negative sign when the
direction of the spin axis indicates under the orbit plane.


           ^ Propelling power
           |
    +-------------+           Ex. When ALON/ALAT=0/0
    |    AO-40    |               and AO-40 situates on apogee,
    +-------------+               then the beam turn to the earth.
       |     ^
       |    ^^^ Motor
       |       (Spin axis)
       v
  Antenna beam



               Motor
          vvv (Spin axis)
           v
    +-------------+           Ex. When ALON/ALAT=180/0
    |    AO-13    |               and AO-13 situates on apogee,
    +-------------+               then the beam turn to the earth.
       |      |
       |      v
       |   Propelling power
       v
  Antenna beam



The distance between the earth and the apogee, perigee,
and a period of AO-40 are able to calculate with the
Keplerian Equation "t-e*sin(t)=MA".

This algorithm are the following.  'e=0.8149168' is
the eccentricity in the following keplerian set.

 Satellite: AO-40                          
 Catalog number: 26609                     
 Epoch time:      01143.75467560           
 Element set:      78                      
 Inclination:        5.2066 deg            
 RA of node:       190.8403 deg            
 Eccentricity:    0.8149168                
 Arg of perigee:   272.5771 deg            
 Mean anomaly:       7.8201 deg            
 Mean motion:    1.27026844 rev/day        
 Decay rate:      -3.85e-06 rev/day^2      
 Epoch rev:             259                
 Checksum:              298                


(1)  M=MA*2*3.14/256                       
(2)  to=M{e*sin(M){0.5*e^2*sin(2M)       
(3)  mo=to-e*sin(to)                       
(4)  dto=(M-mo)/(1-e*cos(to))              
(5)  t1=to+dto                             
(6)  m1=t1-e*sin(t1)                       
(7)  dt1=(M-m1)/(1-e*cos(t1))              
(8)  t2=t1+dt1                             
(9)  m2=t2-e*sin(t2)                       
(10) dt2=(M-m2)/(1-e*cos(t2))              
(11) t3=t2+dt2                             
(12) tan(t3/2)                             
(13) u=root((1+e)/(1-e))*tan(t3/2)         
(14) s=2*arctan(u)                         
(15) p=24*3600/n                           
(16) 4*3.14^2*(a^3/p^2)=G*Q                
(17) a=(((G*Q*p^2)/(4*3.14^2))^(1/3))*10^9 
(18) r0=a(1-e^2)/(1+e*cos(s))              
(19) r=r0-6371                             


Then,

 Period  : 18 hours and 54 minutes
 Apogee  : 58,985Km
 Perigee :    291Km


Back to Top

Back to Home Page