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ABSTRACT 

An empirical relation between the lattice constant and the magnetic moment was found in 
binary solid solutions of 3d transition metals expressed as a(x)=aA(1-x)+ aB x + C <|µ|>, where x 
is the atomic fraction, aA, aB and C are parameters, <|µ|> the average magnitude of atomic 
magnetic moments. It is shown that the equation holds for all possible combinations of 3d 
transition metals which form solid solutions over a considerably wide range of concentrations.  
The analysis of lattice constants at high temperatures leads to the conclusion that localized 
atomic moments are retained above Tc in most 3d ferromagnetic alloys.  The thermal 
expansion anomaly observed in the Invar alloy (Fe65Ni35) is explained as the result of collapse 
of localized moments above Tc. The physical meanings of the parameters are discussed in terms 
of the atomic size. It is shown that expansion of the atomic size is caused by the formation of 
the localized moment.   

INTRODUCTION 

It is well known that 3d electrons, which are responsible for the magnetic moment of 
transition elements, partake in the cohesion of transition metals. Therefore, a correlation 
between the magnetic moment and the atomic distance may be expected. Little attention has 
been paid to this point so far. In this paper, an empirical relation between the lattice constant and 
the atomic magnetic moment of transition metal alloys is proposed. We shall show that the 
analysis of the lattice constant versus concentration curve (L-C curve) can provide information 
about the atomic magnetic moments in alloys and can serve as an experimental method to detect 
the existence of localized moments above the Curie temperature.  

EMPIRICAL RELATION 

The lattice constant of binary solid solutions varies linearly with atomic concentration in the 
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first approximation (Vegard's law).  When applied to metallic solid solutions, deviations from 
the law invariably appear.  These deviations are caused by many factors. In the transition metal 
alloys, magnetic properties may be one of the important factors1). We have found an empirical 
relation between the lattice constant and the atomic moment2).  The relation is given by a 
simple equation,    

a(x)=aA· (1-x)+aB·x + C<|µ|>   (1) 

where a(x) is the lattice constant of the solid solution A1-xBx, aA, aB and C are adjustable 
parameters and <|µ|> the average magnitude of the atomic magnetic moments, which can be 
estimated according to the following rules.  (i) For simple ferromagnetic alloys, <|µ|> may be 
equated with µs0, the spontaneous atomic moment at 0 K. (ii) In some ferromagnetic alloys, 
which usually exhibit an exchange anisotropy and/or a rotational hysteresis loss, a part of 
atomic moments aligns antiferromagnetically to the bulk magnetization.  In this case, <|µ|> > 
µso. Modern experimental techniques such as neutron scattering and NMR may be helpful to 
estimate <|µ|>. (iii) It seems that <|µ|> can be equated with the sublattice moment for 
antiferromagnetic alloys.  However, the spin structure of antiferromagnetic disordered alloys is 
not so simple as that of antiferromagnetic insulators.  They are occasionally lacking in a long 
range spin order and should rather be described as "spin glasses".  Therefore, the sublattice 
moment determined by neutron diffraction is not always equal to <|µ|>. As for the case (ii), the 
estimation of <|µ|> could be done with the help of neutron scattering or some other experiments. 
(iv)  <|µ|> =0 for nonmagnetic alloys, namely Pauli paramagnetic alloys or alloys having no 
localized magnetic moments.  

In any case, it is desirable to use the data at T = 0 K for both lattice constants and <|µ|>. 
Nevertheless, we are mostly concerned with lattice constants at room temperature (RT) because 
of a lack of data at T=0 K.  Even in this case, better agreement is obtained by using the atomic 
moments at T=0 K for <|µ|>.  However, if the alloy exhibits a thermal expansion anomaly 
below RT, we have to use the data at T=0 K for both a(x) and <|µ|>.  The effect of temperature 
on the lattice constant will be discussed later.   We first demonstrate how well equation (1) 
holds for all possible combinations of 3d transition metals which make a solid solution over 
considerably wide range of concentrations.  

ALLOYS OF FERROMAGNETIC METALS 
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bcc Fe1-xCox : Fig. 1 shows the observed and the calculated lattice constants of bcc Fe-Co.  As 
can be seen in the figure, the agreement is excellent.  Moreover, it is worth noting a change of 

the lattice constant in the vicinity x=0.5 by 
atomic ordering.  Generally speaking, the 
formation of a superlattice causes a 
shrinkage of the lattice.   On the contrary, 
the lattice constant increases by atomic 
ordering in this case. This exceptional 
behavior may be explained as the result of 
increase of the magnetization due to atomic 
ordering.  

fcc Co1-xNix :  (Fig. 2) Both the lattice 
constant and the atomic moment varies 
linearly with concentration. In this case, 
however the parameters cannot be 
determined uniquely. It should be noted that 
the linear appearance of the L-C curve may 
be regarded as the evidence to show that 
contributions to the deviation from Vegard's 
law other than the magnetic one are 
negligible.  

fcc Fe1-xNix : Since the alloys with 0.3 < x < 
0.4 have the thermal expansion anomaly 
known as the Invar anomaly, We have to use 
the lattice constant at 0 K.  Fortunately, we 
can estimate it from the available data on the 
thermal expansion. The lattice constant at 0 

K
o
a

Fig. 1.  The lattice constant of bcc Fe-Co at RT 
(Ref. 1, p.505).  
---- represents calculated values with the 
parameters given in Table 1. <|µ|> =µs03) are 
also given. 
 thus obtained is in good agreement with the calculated values as seen in Fig. 3. The deviation 
f the lattice constant from a straight line near the Invar region ( 0.3 < x < 0.4) can be explained 
s the result of the deviation of the magnetization from the Slater-Pauling curve.   
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Fig. 2. The lattice constant at RT (Ref. 1, 
p.517) and the atomic moment at 0 K of fcc 
Co-Ni. 

Fig. 3. The lattice constant4) and the atomic 
moments of fcc Fe-Ni at 0 K.  ------ 
calculated value with the parameters given in 
Table 1. 

 

 

 

 

ALLOYS OF NONFERROMAGNETIC METALS 

bcc V1-xCrx and bcc Ti1-xVx : (Figs. 4 and 5 ) In these systems, one may assume <|µ|> = 0, since 
they are Pauli paramagnetic over all concentrations.  Therefore, the lattice constant is expected 
to obey Vegard's law.  In fact, the observed lattice constant varies linearly with concentration 
within the scatter of the data points.  

bcc V1-xMnx  : (Fig. 6)  In the vanadium rich region, the lattice constant decreases linearly 
with x.  This linear appearance breaks at about x=0.5 and the L-C curve deviates upwards for x 
> 0.5, which means a relative expansion of the lattice.  On the other hand, the temperature 
dependence of the magnetic susceptibility is Pauli paramagnetic in the vanadium rich region.  
There are some experimental results indicating the formation of magnetic moment in the 
manganese rich region 6) corresponding with the change of the slope in the L-C curve. From 
these observations, we may consider that <|µ|> =0 for x  < 0.5 and  <|µ|> ≠ 0 for x > 0.5. The 
change of the slope in the L-C curve can thus be explained on the basis of Eq. (1).  
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Fig. 6. The lattice constant of bcc V-Mn6)  

Fig. 7. The lattice constant of fcc Cu-Mn at  
RT (Ref. 1, p. 588). 

 

fcc Cu1-xMnx (Fig. 7): Although intensive investigations have been done, the magnetic and the 
electronic structures are still not clear except at the two sides of the system.  At the copper rich 
end, it is believed that Mn atoms have well defined localized moment with S = 5/2 or µMn = 5 µB.  
It has been revealed that Mn rich Mn-Cu alloys are antiferromagnetic with sublattice moment of 

Fig. 4. The lattice constant at RT (Ref. 1, p.567) of 
bcc V-Cr. 

Fig. 5. The lattice constant of bcc Ti-V (Ref. 1, p. 875) 
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Fig. 8 The lattice constant of bcc Fe-V and bcc 
Fe-Cr at RT (Ref. 1, p 663 and p 533)  
-------- Calculated value with the parameters 
given in Table 1. 

Fig. 9. The lattice constant at RT and the atomic 
moment at 0 K of fcc Ni-Cu.  
------ calculated value with the parameters given in 
Table 1 

about 2µB
7).  On the other hand, the lattice constant increases linearly with x in Cu rich region 

up to x= 0.4 and then the slope of the L-C curve becomes smaller and finally the lattice constant 
decreases with increasing x. Such a complicated behavior of the L-C curve might be explained 
by Eq. (1) as the result of the decrease of µMn with increasing x.    

ALLOYS OF FERROMAGNETIC AND NONFERROMAGNETIC METALS 

 

bcc Fe1-xVx and fcc Ni1-xCux (Figs. 8 and 9) : Fairly good agreement is obtained in these system 
with <|µ|> =µso. This indicates the absence of localized moments in the paramagnetic phase.  

fcc Mn1-xCox (Fig. 10) : The equation holds fairly well between the lattice constant at RT and 
µso.  A small discrepancy is observed at the concentrations where ferromagnetism disappears 
( 0.6 < x < 0.8 ).  The origin of this discrepancy may be explained as follows.  It is considered 
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Fig. 10.  The lattice constant at RT ( o ), (Ref. 1, 
p.510) and at 773 K (□ )8) of fcc Co-Mn.  
---- calculated value with the parameters given in 
Table 1. 

Fig. 11.  The lattice constant at RT and atomic 
moment at 0 K of disordered Ni-Mn.  
□  represents the atomic moment of ordered Ni3Mn 12). 

that some of the atomic moments are antiferromagnetically aligned at the critical concentrations 
because an exchange anisotropy has been observed. Consequently, <|µ|> should be larger than 
the bulk magnetization, i.e. <|µ|> > µso, The agreement indicates absence of atomic moments in 
this concentration range. In fact, the magnetic susceptibility is Pauli paramagnetic. However, it 
was reported that the alloys with x < 0.65 becomes antiferromagnetic at low temperatures10).  
In order to discuss the effect of the antiferromagnetism on the lattice constant, the data at T= 0 
are necessary.  

 

bcc Cr1-xFex  (Fig. 8) : The magnetization versus concentration curve of this system is similar 
to that of Fe-V, while the appearance of the L-C curve is quite different.  The equation does not 
hold if one takes simply <|µ|> = µs0. In this system, however, it is believed that an iron atom has 



AIP Conf. Proc No.18 (1974)           470 

 

a localized atomic moment of about 2 µB
11) in the nonferromagnetic region. Assuming µFe =2 µB 

and µCr= 0 over all concentrations, we may write  <|µ|> =2x. Then, it is expected that <|µ|> and 
consequently the lattice constant varies linearly with concentration in rough agreement with 
experimental observations.  Strictly speaking, the L-C curve deviates slightly from a straight 
line at two sides of the system.   Atomic moments on Cr atoms could be the cause of this 
behavior.  

fcc Ni1-xMnx (Fig. 11): The equation does not hold if <|µ|> is equated with µs. This apparent 
disagreement may be explained on the same basis as above, that is, the magnitude of atomic 
moments on each atom would remain unchanged in the concentration range where the L-C 
curve is linear ( 0 < x < 0.6 ).   The sharp decrease of the spontaneous magnetization in the 
region 0.1 < x < 0.3 might be attributable to antiferromagnetic alignment of surviving localized 
moments. It should be noted that no difference is observed in the lattice constants between the 
atomically ordered and disordered states at the composition of Ni3Mn despite the remarkable 
difference of the magnetization.  The antiferromagnetic spin coupling is supported from recent 
experimental results such as neutron scattering13) and NMR14).  The magnitude of the Mn 
moment differs slightly between the two sides of the system. In the Ni rich region, Mn atoms 
have an atomic moment of about 3 µB 12)  and in the Mn rich region about 2 µB

l5). The decrease 
of the slope of the L-C curve for x > 0.6 might be attributable to the decrease of the Mn 
moment.  

Table I Values of parameters  

system lattice  a A a B C  temperature
A - B structure  ( Α )  ( A )  ( A/uB)  
Fe-Co bcc 2.788 2.757 0.0324    RT 
Fe-V bcc 2.775 3 0.0386    RT 
Fe-A1 bcc 2.788 3.03 0.0355    RT 
Fe-Ni fcc 3.551 3.489 0.0317    0K 
Ni-Cu fcc 3.506 3.607 0.0191    RT 
Co-Mn fcc 3.464 3.75 0.045     RT  

The parameters thus obtained are listed in Table 1. One should note that the parameter C has 
a roughly constant value of about 0.03 Å/µB.  It is interesting to compare the values of aA or aB 
which are determined for different systems with the same structure.   For example, the three 
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values of aFe which are determined for bcc Fe-Co, bcc Fe-V and bcc Fe-Al are 2.788 Å, 2.775 Å 
and 2.788 Å, respectively.  It is worth noting that these three values are very close.  This 
indicates aA (or aB) has a definite physical meaning.  

LATTICE CONSTANT AT HIGH TEMPERATURES 

It is interesting to see whether Eq. (1) holds or not at high temperatures or above the Curie 
temperature Tc. However, we encounter a difficulty in estimating <|µ|>.    According to the 
simple itinerant picture, it is possible that <|µ|> = 0 above Tc since the polarization of 3d bands 
and accordingly that of the Wannier functions at each atomic sites should vanish. On the other 
hand, on the basis of the localized spin model, <|µ|> would remain finite even above Tc.  
Bearing this in mind, we can expect to get information about the validity of different models 
from the appearance of the L-C curves at high temperatures.  

Firstly, let consider the lattice constant of bcc Fe-Co alloys. According to our analysis at a 
low temperature, the magnetic term C<|µ|> is so large that a notable thermal expansion anomaly 
should be observed around Tc if <|µ|> decreased with the decreasing bulk magnetization as 
illustrated in Fig. 12.  On the contrary, such an anomaly has not been observed.  From this 
fact, it was previously considered that the deviation from Vegard's law could not be ascribed to 
a magnetic origin. However, noting that the agreement at room temperature is too good to be 
accidental, we should rather conclude that <|µ|> remains constant over a wide temperature range 

Fig. 12. Lattice constant a plotted against temperature for bcc Fe-Co. Co content: A 
3% B 6%,c 9%, D 12%.  
----- represents the expected change of lattice constant on the assumption that the 
magnetic term decreases with temperature. 
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Fig. 13. The lattice constant of fcc Fe-Ni at 
various temperatures. 

including Tc and that thermal demagnetization is caused by fluctuations of localized atomic 
moments.     One can describe such a situation in terns of Wannier functions which are still 
polarized above Tc within a certain time interval.   In this sense, we may say that the localized 
spin picture is a better description of this phenomenon.  Similar behavior is observed in the 
L-C curve of fcc Co-Mn alloys at a high temperature, namely 773 K, as seen in Fig. 9.  

Particular attention should be paid to the 
L-C curve of fcc Fe1-xNix alloys in connection 
with the Invar problem.  As seen in Fig. 13, 
the lattice constant at 870 K, where the alloys 
are paramagnetic over all concentrations, 
varies linearly with x for x > 0.6 and the 
increase of its value from that at 0 K may well 
be explained by the ordinary thermal 
expansion due to lattice vibrations. This 
behavior indicates that the magnetic term 
C<|µ|> remains unchanged above Tc.  
Actually, no thermal expansion anomaly 
attributable to a magnetic origin is observed 
over this concentration range.  For 0.4 < x < 

0.6,  the lattice constant at 870 K deviates 
downwards from a straight line, indicating the 
reduction of the magnetic term. At 0 K, 

however, the lattice constant and µso are still increasing linearly with increasing iron 
composition over this range. This behavior may be explained as follows.  Both iron and nickel 
atoms have full moments, namely µFe = 2.8 µB and µNi = 0.6 µB at 0 K for 0.4 < x < 1.0. 
Therefore, <|µ|>, which may be written as <|µ|> = 2.8 (1-x) + 0.6 x, is linear in x.  Above Tc, 
they still have full moments for 0.6 < x < 1.0 but for x < 0.6, the magnitude of the atomic 
moments is reduced by raising temperature, which results in the thermal expansion anomaly 
observed in this region. Thus, the anomalous thermal expansion of the Invar alloy could be 
explained as the result of the reduction of the magnitude of the atomic moments17).  This is in 
agreement with the result of neutron scattering18).    
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ATOMIC SIZE MODEL 

The change of the lattice constant in a solid solution A1-xBx can be described in terms of the 
mean atomic size d expressed as 

F a(x) = d = dA·(1-x)+dB·x,     (2) 

where dA and dB are atomic sizes of pure elements and F is a structure factor which depends 
on the lattice structure. F = 1 for simple cubic, F = √2/2 for fcc and F= √3/2 for bcc. We will 
show that Eq. (1) can be derived from extension of this idea. The procedure will give a certain 
physical meaning to the parameters aA, aB and C in Eq. (1).   One shoud bear in mind, 
however, that the concept of atomic size does not necessarily have physical reality but may 
simply be a convenient representation of the atomic distance.  We assume that constituent 
atoms take different states with the atomic moment µiA/B and the atomic size di

A/B. The lattice 
constant and the meem atomic moment can be given by  
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where pi
A/B(x) is the probability of finding an A/B atom in the i th state. Eq. (1) can be derived 

from these equations if the following conditions are fulfilled.  

Case I :  If  di
A/B = d0

A/B + k·µi
A/B,   a(x) can be given by  
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Comparing with Eq. (1), we get aA = dA/F,  aB = dB/F and C = k/F  

Case II.  (Pseudo Ternary Alloy Model)  If the element A has two states and B has an only 
one state, a(x) and <|µ|> are given by  
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Noting pA
I(x) + pA

II(x) = 1, we can eliminate pA
I(x) and pA

II(x) from Eqs. (6) and (7). Then 
we get Eq. (1) with 

aA = {dA
II – KµA

II}/F,   aB = {dB
0 – KµB

0}/F and C=K/F,  

where K={dA
II – dA

I}/{µ AII – µ AI}.  

One should note that, in this case, the atomic size of individual atoms is not necessarily a linear 
function of the atomic moment.  Some other experimental information is necessary to 
determine which case is realized in actual alloys.  

It is possible to estimate di
A/B for some special cases. For example, in bcc Fe1-xCox alloys, it 

has been revealed by neutron scattering that the individual atomic moments remain constant 
over the concentration range x > 0.5, where both the lattice constant and the magnetic moment 
vary linearly with concentration21).   We may assume that each element takes only one state  
with µFe = 3µB and µCo = 1.8 µB over this range. By extrapolating the linear region 0.5 < x < 0.7 
to pure iron, we can estimate the atomic size of bcc Fe in the state of µFe=3 µB. dFe = 2.492 Å is 
thus obtained. Pure iron may be another state with µFe = 2.2 µB and dFe = 2.477 Å. Since 
iron atoms are thought to be nonmagnetic in V rich Fe-V, we can estimate the atomic 
size of nonmagnetic iron. In this case, evidently dFe0 = √3/2 aFe, where aFe is the 
parameter of Eq. (1) for bcc Fe-V system. The atomic sizes thus obtained are listed in 
Table 2 with other examples estimated in a similar way.  

The expansion of the atomic size with the atomic moment is plotted in Fig. 14.  It 
should be emphasized that the rate of the expansion is almost same for different 
elements.  It appears that the expansion is a linear function of the atomic moment, 
corresponding to the Case I.  However, the number of data points is not adequate to 
make a definite conclusion.  
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Fig. 14. Expansion of atomic size with 

atomic moment.  The atomic sizes of 

gamma-Mn in different states are estimated 

by Weiss22).  

 

Table II Atomic sizes of some elements in different atomic states 

e l e m e n t  a n d a t o m i c a t o m i c e x p a n s i o n s y s t e m  
s t r u c t u r e m o m e n t s i z e     ( % )  

   ( A )   
b c c  F e  0 2 .4 0 3 0 F e -V  

0 2 .  4 0 8 0 F e -A 1  
2 .2 2 .4 7 7 2 .8 8 p u r e  F e  
3 2 .4 9 2 3 .5 3 F e -C o  

f c c  F e 0 2 .5 2 1 0 F e -M n  
 2 .8 2 .5 7 4 2 .1 F e -N i  

f c c  C o 0 2 .4 6 4 0 C o -M n  
 1 .8 2 .5 0 7 2 .3 p u r e  C o  

f c c  M n 0 2 .5 9 0 a f t e r  W e i s s 1 9  
 2 .4 2 .6 9 2 .8        
 4 . 5 3 .8 2 6 .4         

 

 

 

So far, we have referred only to binary solid solutions of 3d metals with cubic structure. The 
equation may be more widely applicable, for example, one of the constituents is not a 3d metal.  
Nice agreement is obtained in bcc Fe-Al alloys as seen in Fig. 15.  We may apply the relation 
to pseudo-binary alloys.  The peculiar appearance of the L-C curve of cubic Laves compounds 
such as Y(Fe1-xCox)2

20) may be explained by adding a magnetic term. For alloys or metallic 
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Fig. 15.  The lattice constant of bcc 
Fe-Al at RT (Ref. 1, p.344).  
------ calculated values with the 
parameters given in Table 1, where µs0 is 
used for <|µ|> , Bars represent the 
calculated lattice constant with <|µ|> 
which are estimated from the 
distribution of the internal 
magnetic fields acting on Fe nuclei 
(bars in the lower figure). 
 

compounds with non-cubic structure, a similar relation 
might be found between the atomic volume and the 
magnetic moment.  

Presumably, the magnetic term C<|µ|> is attributable 
to volume magneto-striction. However, theoretical21)  
and experimental22) investigations predict quadratic 
dependence of the spontaneous volume magneto-striction 
on the magnetic moment, while the magnetic term of Eq. 
(l) is linear with respect to the magnetic moment.  This 
contradiction may be removed by invoking the 
pseudo-ternary alloy model with an assumption  

dA
i = dA

0 + k (µA
i)2. 

Or there might be another mechanism to cause a 
volume expansion accompanied by the formation of 
localized moments. It is possible that the attractive force 
between magnetized atoms is weaker than that between 
nonmagnetic atoms. Theoretical investigation on this 
subject are desirable.  
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