Tosio Kato : Perturbation Theory for Linear Operators

First Edition : 2015-10-17
Last Updated :

Contents

Chapter One
Operator theory in finite-dimensional vector spaces
§ 1 Vector spaces and normed vector spaces . . . . . . . . . . . . . 1
1. Basic notions . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Linear manifolds . . . . . . . . . . . . . . . . . . . . . . 3
4. Convergence and norms . . . . . . . . . . . . . . . . . . . 4
5. Topological notions in a normed space . . . . . . . . . . . . . 6
6. Infinite series of vectors . . . . . . . . . . . . . . . . . . 7
7. Vector-valued functions . . . . . . . . . . . . . . . . . . . 8

§ 2. Linear forms and the adjoint space . . . . . . . . . . . . . . . . 10
1. Linear forms . . . . . . . . . . . . . . . . . . . . . . . . 10
2. The adjoint space . . . . . . . . . . . . . . . . . . . . . . 11
3. The adjoint basis . . . . . . . . . . . . . . . . . . . . . . 12
4. The adjoint space of a normed space . . . . . . . . . . . . . . 13
5. The convexity of balls . . . . . . . . . . . . . . . . . . . . 14
6. The second adjoint space . . . . . . . . . . . . . . . . . . . 15

§ 3. Linear operators . . . . . . . . . . . . . . . . . . . . . . . . 16
1. Definitions. Matrix representations . . . . . . . . . . . . . . 16
2. Linear operations on operators . . . . . . . . . . . . . . . . 18
3. The algebra of linear operators . . . . . . . . . . . . . . 19
4. Projections. Nilpotents . . . . . . . . . . . . . . . . . . . . 20
5. Invariance. Decomposition . . . . . . . . . . . . . . . . . . 22
6. The adjoint operator . . . . . . . . . . . . . . . . . . . . . 23

§ 4. Analysis with operators . . . . . . . . . . . . . . . . . . . . . 25
1. Convergence and norms for operators . . . . . . . . . . . . . 25
2. The norm of T" . . . . . . . . . . . . . . . . . . . . . . . 27
3. Examples of norms . . . . . . . . . . . . . . . . . . . . . 28
4. Infinite series of operators . . . . . . . . . . . . . . . . . . 29
5. Operator-valued functions . . . . . . . . . . . . . . . . . . 31
6. Pairs of projections . . . . . . . . . . . . . . . . . . . . . 32

§ 5. The eigenvalue problem . . . . . . . . . . . . . . . . . . . . . 34
1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 34
2. The resolvent . . . . . . . . . . . . . . . . . . . . . . . . 36
3. Singularities of the resolvent . . . . . . . . . . . . . . . . . 38
4. The canonical form of an operator . . . . . . . . . . . . . . . 40
5. The adjoint problem . . . . . . . . . . . . . . . . . . . . . 43
6. Functions of an operator . . . . . . . . . . . . . . . . . . . 44
7. Similarity transformations . . . . . . . . . . . . . . . . . . 46

§ 6. Operators in unitary spaces . . . . . . . . . . . . . . . . . . . 47
1. Unitary spaces . . . . . . . . . . . . . . . . . . . . . . . 47
2. The adjoint space . . . . . . . . . . . . . . . . . . . . . . 48
3. Orthonormal families . . . . . . . . . . . . . . . . . . . . 49
4. Linear operators . . . . . . . . . . . . . . . . . . . . . . 51
5. Symmetric forms and symmetric operators . . . . . . . . . . . 52
6. Unitary, isometric and normal operators . . . . . . . . . . . . 54
7. Projections . . . . . . . . . . . . . . . . . . . . . . . . . 55
8. Pairs of projections . . . . . . . . . . . . . . . . . . . . . 56
9. The eigenvalue problem . . . . . . . . . . . . . . . . . . . 58
10. The minimax principle . . . . . . . . . . . . . . . . . . . . 60

Chapter Two
Perturbation theory in a finite-dimensional space 62

§ 1. Analytic perturbation of eigenvalues . . . . . . . . . . . . . . . 63
1. The problem . . . . . . . . . . . . . . . . . . . . . . . . 63
2. Singularities of the eigenvalues . . . . . . . . . . . . . . . . 65
3. Perturbation of the resolvent . . . . . . . . . . . . . . . . . 66
4. Perturbation of the eigenprojections . . . . . . . . . . . . . . 67
5. Singularities of the eigenprojections . . . . . . . . . . . . . . 69
6. Remarks and examples . . . . . . . . . . . . . . . . . . . . 70
7. The case of T (x) linear in x . . . . . . . . . . . . . . . . . 72
8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 73

§ 2. Perturbation series . . . . . . . . . . . . . . . . . . . . . . . 74
1. The total projection for the A-group . . . . . . . . . . . . . . 74
2. The weighted mean of eigenvalues . . . . . . . . . . . . . . . 77
3. The reduction process . . . . . . . . . . . . . . . . . . . . 81
4. Formulas for higher approximations . . . . . . . . . . . . . . 83
5. A theorem of Motzkin-Taussky . . . . . . . . . . . . . . . 85
6. The ranks of the coefficients of the perturbation series . . . . . . 86

§ 3. Convergence radii and error estimates . . . . . . . . . . . . . . 88
1. Simple estimates . . . . . . . . . . . . . . . . . . . . . . 88
2. The method of majorizing series . . . . . . . . . . . . . . . . 89
3. Estimates on eigenvectors . . . . . . . . . . . . . . . . . . 91
4. Further error estimates . . . . . . . . . . . . . . . . . . . 93
5. The special case of a normal unperturbed operator . . . . . . . . 94
6. The enumerative method . . . . . . . . . . . . . . . . . . . 97

§ 4. Similarity transformations of the eigenspaces and eigenvectors . . . . 98
1. Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . 98
2. Transformation functions . . . . . . . . . . . . . . . . . . . 99
3. Solution of the differential equation . . . . . . . . . . . . . . 102
4. The transformation function and the reduction process . . . . . . 104
5. Simultaneous transformation for several projections . . . . . . . 104
6. Diagonalization of a holomorphic matrix function . . . . . . . . 106

§ 5. Non-analytic perturbations . . . . . . . . . . . . . . . . . . . 106
1. Continuity of the eigenvalues and the total projection . . . . . . 106
2. The numbering of the eigenvalues . . . . . . . . . . . . . . . 108
3. Continuity of the eigenspaces and eigenvectors . . . . . . . . . 110
4. Differentiability at a point . . . . . . . . . . . . . . . . . . 111
5. Differentiability in an interval . . . . . . . . . . . . . . . . 113
6. Asymptotic expansion of the eigenvalues and eigenvectors . . . . 115
7. Operators depending on several parameters . . . . . . . . . . . 116
8. The eigenvalues as functions of the operator . . . . . . . . . . 117

§ 6. Perturbation of symmetric operators . . . . . . . . . . . . . . . 120
1. Analytic perturbation of symmetric operators . . . . . . . . . . 120
2. Orthonormal families of eigenvectors . . . . . . . . . . . . . . 121
3. Continuity and differentiability . . . . . . . . . . . . . . . . 122
4. The eigenvalues as functions of the symmetric operator . . . . . 124
5. Applications. A theorem of Lidskii . . . . . . . . . . . . . . 124

Chapter Three
Introduction to the theory of operators in Banach spaces

§ 1. Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . 127
1. Normed spaces . . . . . . . . . . . . . . . . . . . . . . . 127
2. Banach spaces . . . . . . . . . . . . . . . . . . . . . . . 129
3. Linear forms . . . . . . . . . . . . . . . . . . . . . . . . 132
4. The adjoint space . . . . . . . . . . . . . . . . . . . . . . 134
5. The principle of uniform boundedness . . . . . . . . . . . . . 136
6. Weak convergence . . . . . . . . . . . . . . . . . . . . . . 137
7. Weak* convergence . . . . . . . . . . . . . . . . . . . . . 140
8. The quotient space . . . . . . . . . . . . . . . . . . . . . 140

§ 2. Linear operators in Banach spaces . . . . . . . . . . . . . . . . 142
1. Linear operators. The domain and range . . . . . . . . . . . . 142
2. Continuity and boundedness . . . . . . . . . . . . . . . . . 145
3. Ordinary differential operators of second order. . . . . . . . . . 146

§ 3. Bounded operators . . . . . . . . . . . . . . . . . . . . . . . 149
1. The space of bounded operators . . . . . . . . . . . . . . . 149
2. The operator algebra .1 (X) . . . . . . . . . . . . . . . . . . 153
3. The adjoint operator . . . . . . . . . . . . . . . . . . . . . 154
4. Projections . . . . . . . . . . . . . . . . . . . . . . . . . 155

§ 4. Compact operators . . . . . . . . . . . . . . . . . . . . . . . 157
1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . 157
2. The space of compact operators . . . . . . . . . . . . . . . . 158
3. Degenerate operators. The trace and determinant . . . . . . . . 160

§ 5. Closed operators . . . . . . . . . . . . . . . . . . . . . . . . 163
1. Remarks on unbounded operators . . . . . . . . . . . . . . . 163
2. Closed operators . . . . . . . . . . . . . . . . . . . . . . . 164
3. Closable operators . . . . . . . . . . . . . . . . . . . . . . 165
4. The closed graph theorem .. . . . . . . . . . . . . . . . . . 166
5. The adjoint operator . . . . . . . . . . . . . . . . . . . . . 167
6. Commutativity and decomposition . . . . . . . . . . . . . . . 171

§ 6. Resolvents and spectra . . . . . . . . . . . . . . . . . . . . . 172
1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 172
2. The spectra of bounded operators . . . . . . . . . . . . . . . 176
3. The point at infinity . . . . . . . . . . . . . . . . . . . . . 176
4. Separation of the spectrum . . . . . . . . . . . . . . . . . . 178
5. Isolated eigenvalues . . . . . . . . . . . . . . . . . . . . . 180
6. The resolvent of the adjoint . . . . . . . . . . . . . . . . . 183
7. The spectra of compact operators . . . . . . . . . . . . . . . 185
8. Operators with compact resolvent . . . . . . . . . . . . . . . 187

Chapter Four
Stability theorems

§ 1. Stability of closedness and bounded invertibility . . . . . . . . . . 189
1. Stability of closedness under relatively bounded perturbation . . . 189
2. Examples of relative boundedness . . . . . . . . . . . . . . . 191
3. Relative compactness and a stability theorem . . . . . . . . . . 194
4. Stability of bounded invertibility . . . . . . . . . . . . . . . 196

§ 2. Generalized convergence of closed operators . . . . . . . . . . . . 197
1. The gap between subspaces . . . . . . . . . . . . . . . . . . 197
2. The gap and the dimension . . . . . . . . . . . . . . . . . . 199
3. Duality . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4. The gap between closed operators . . . . . . . . . . . . . . . 201
5. Further results on the stability of bounded invertibility . . . . . 205
6. Generalized convergence . . . . . . . . . . . . . . . . . . . 206

§ 3. Perturbation of the spectrum . . . . . . . . . . . . . . . . . . 208
1. Upper semicontinuity of the spectrum . . . . . . . . . . . . . 208
2. Lower semi-discontinuity of the spectrum . . . . . . . . . . . 209
3. Continuity and analyticity of the resolvent . . . . . . . . . . . 210
4. Semicontinuity of separated parts of the spectrum . . . . . . . . 212
5. Continuity of a finite system of eigenvalues . . . . . . . . . . . 213
6. Change of the spectrum under relatively bounded perturbation . 214
7. Simultaneous consideration of an infinite number of eigenvalues 215
8. An application to Banach algebras. Wiener's theorem . . . . . . 216

§ 4. Pairs of closed linear manifolds . . . . . . . . . . . . . . . . . 218
1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 218
2. Duality . . . . . . . . . . . . . . . . . . . . . . . . . . 221
3. Regular pairs of closed linear manifolds . . . . . . . . . . . . 223
4. The approximate nullity and deficiency . . . . . . . . . . . . 225
5. Stability theorems . . . . . . . . . . . . . . . . . . . . . . 227

§ 5. Stability theorems for semi-Fredholm operators . . . . . . . . . . 229
1. The nullity, deficiency and index of an operator . . . . . . . . . 229
2. The general stability theorem . . . . . . . . . . . . . . . . . 232
3. Other stability theorems . . . . . . . . . . . . . . . . . . . 236
4. Isolated eigenvalues . . . . . . . . . . . . . . . . . . . . . 239
5. Another form of the stability theorem . . . . . . . . . . . . . 241
6. Structure of the spectrum of a closed operator . . . . . . . . . 242
§ 6. Degenerate perturbations . . . . . . . . . . . . . . . . . . . . 244
1. The Weinstein-Aronszajn determinants . . . . . . . . . . . . . 244
2. The W-A formulas . . . . . . . . . . . . . . . . . . . . . . 246
3. Proof of the W-A formulas . . . . . . . . . . . . . . . . . . 248
4. Conditions excluding the singular case . . . . . . . . . . . . . 249

Chapter Five
Operators in Hilbert spaces

§ 1. Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . 251
1. Basic notions . . . . . . . . . . . . . . . . . . . . . . . . 251
2. Complete orthonormal families . . . . . . . . . . . . . . . . 254

§ 2. Bounded operators in Hilbert spaces . . . . . . . . . . . . . . . 256
1. Bounded operators and their adjoints . . . . . . . . . . . . . 256
2. Unitary and isometric operators . . . . . . . . . . . . . . . . 257
3. Compact operators . . . . . . . . . . . . . . . . . . . . . 260
4. The Schmidt class . . . . . . . . . . . . . . . . . . . . . . 262
5. Perturbation of orthonormal families . . . . . . . . . . . . . . 264

§ 3. Unbounded operators in Hilbert spaces . . . . . . . . . . . . . . 267
1. General remarks . . . . . . . . . . . . . . . . . . . . . . 267
2. The numerical range . . . . . . . . . . . . . . . . . . . . 267
3. Symmetric operators . . . . . . . . . . . . . . . . . . . . 269
4. The spectra of symmetric operators . . . . . . . . . . . . . . 270
5. The resolvents and spectra of selfadjoint operators . . . . . . . 272
6. Second-order ordinary differential operators . . . . . . . . . . 274
7. The operators T*T . . . . . . . . . . . . . . . . . . . . . 275
8. Normal operators . . . . . . . . . . . . . . . . . . . . . . 276
9. Reduction of symmetric operators . . . . . . . . . . . . . . 277
10. Semibounded and accretive operators . . . . . . . . . . . . . 278
11. The square root of an m-accretive operator . . . . . . . . . . 281

§ 4. Perturbation of selfadjoint operators . . . . . . . . . . . . . . . 287
1. Stability of selfadjointness . . . . . . . . . . . . . . . . . . 287
2. The case of relative bound 1 . . . . . . . . . . . . . . . . . 289
3. Perturbation of the spectrum . . . . ... . . . . . . . . . . . 290
4. Semibounded operators . . . . . . . . . . . . . . . . . . . 291
5. Completeness of the eigenprojections of slightly non-selfadjoint operators . 293

§ 5. The Schrödinger and Dirac operators . . . . . . . . . . . . . . . 297
1. Partial differential operators . . . . . . . . . . . . . . . . . 297
2. The Laplacian in the whole space . . . . . . . . . . . . . . . 299
3. The Schrödinger operator with a static potential . . . . . . . . 302
4. The Dirac operator . . . . . . . . . . . . . . . . . . . . . 305

Chapter Six
Sesquilinear forms in Hilbert spaces and associated operators

§ 1. Sesquilinear and quadratic forms . . . . . . . . . . . . . . . . . 308
1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 308
2. Semiboundedness . . . . . . . . . . . . . . . . . . . . . . 310
3. Closed forms . . . . . . . . . . . . . . . . . . . . . . . . 313
4. Closable forms . . . . . . . . . . . . . . . . . . . . . . . 315
5. Forms constructed from sectorial operators . . . . . . . . . . . 318
6. Sums of forms . . . . . . . . . . . . . . . . . . . . . . . 319
7. Relative boundedness for forms and operators . . . . . . . . . . 321

§ 2. The representation theorems . . . . . . . . . . . . . . . . . . 322
1. The first representation theorem . . . . . . . . . . . . . . . . 322
2. Proof of the first representation theorem . . . . . . . . . . . . 323
3. The Friedrichs extension . . . . . . . . . . . . . . . . . . . 325
4. Other examples for the representation theorem . . . . . . . . . 326
5. Supplementary remarks . . . . . . . . . . . . . . . . . . . 328
6. The second representation theorem . . . . . . . . . . . . . . 331
7. The polar decomposition of a closed operator . . . . . . . . . . 334

§ 3. Perturbation of sesquilinear forms and the associated operators . . . 336
1. The real part of an m-sectorial operator . . . . . . . . . . . . . 336
2. Perturbation of an m-sectorial operator and its resolvent . . . . . 338
3. Symmetric unperturbed operators . . . . . . . . . . . . . . . 340
4. Pseudo-Friedrichs extensions . . . . . . . . . . . . . . . . . 341

§ 4. Quadratic forms and the Schrödinger operators . . . . . . . . . . 343
1. Ordinary differential operators . . . . . . . . . . . . . . . . 343
2. The Dirichlet form and the Laplace operator . . . . . . . . . . 346
3. The Schrödinger operators in R3 . . . . . . . . . . . . . . . . 348
4. Bounded regions . . . . . . . . . . . . . . . . . . . . . . 352

§ 5. The spectral theorem and perturbation of spectral families . . . . . 353
1. Spectral families . . . . . . . . . . . . . . . . . . . . . . 353
2. The selfadjoint operator associated with a spectral family . . . . 356
3. The spectral theorem . . . . . . . . . . . . . . . . . . . . 360
4. Stability theorems for the spectral family . . . . . . . . . . . . 361

Chapter Seven
Analytic perturbation theory

§ 1. Analytic families of operators . . . . . . . . . . . . . . . . . . 365
1. Analyticity of vector- and operator-valued functions . . . . . . . 365
2. Analyticity of a family of unbounded operators . . . . . . . . . 366
3. Separation of the spectrum and finite systems of eigenvalues . . . 368
4. Remarks on infinite systems of eigenvalues . . . . . . . . . . . 371
5. Perturbation series . . . . . . . . . . . . . . . . . . . . 372
6. A holomorphic family related to a degenerate perturbation . . . . 373

§ 2. Holomorphic families of type (A) . . . . . . . . . . . . . . . . 375
1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . 375
2. A criterion for type (A) . . . . . . . . . . . . . . . . . . . 377
3. Remarks on holomorphic families of type (A) . . . . . . . . . . 379
4. Convergence radii and error estimates . . . . . . . . . . . . . 381
5. Normal unperturbed operators . . . . . . . . . . . . . . . . 383

§ 3. Selfadjoint holomorphic families . . . . . . . . . . . . . . . . . 385
1. General remarks . . . . . . . . . . . . . . . . . . . . . . . 385
2. Continuation of the eigenvalues . . . . . . . . . . . . . . . . 387
3. The Mathieu, Schrodinger, and Dirac equations . . . . . . . . . 389
4. Growth rate of the eigenvalues . . . . . . . . . . . . . . . . 390
5. Total eigenvalues considered simultaneously . . . . . . . . . . 392

§ 4. Holomorphic families of type (B) . . . . . . . . . . . . . . . . 393
1. Bounded-holomorphic families of sesquilinear forms . . . . . . . 393
2. Holomorphic families of forms of type (a) and holomorphic families of operators of type (B) . 395
3. A criterion for type (B) . . . . . . . . . . . . . . . . . . . 398
4. Holomorphic families of type (B) . . . . . . . . . . . . . . . 401
5. The relationship between holomorphic families of types (A) and (B) 403
6. Perturbation series for eigenvalues and eigenprojections . . . . . 404
7. Growth rate of eigenvalues and the total system of eigenvalues . . . 407
8. Application to differential operators . . . . . . . . . . . . . . 408
9. The two-electron problem . . . . . . . . . . . . . . . . . . 410

§ 5. Further problems of analytic perturbation theory . . . . . . . . . 413
  1. Holomorphic families of type (C) . . . . . . . . . . . . . . . 413
  2. Analytic perturbation of the spectral family . . . . . . . . . . 414
  3. Analyticity of `abs(H (x))` and `abs(H (x))^theta` . . . . . . . . . . . . . . . 416
§ 6. Eigenvalue problems in the generalized form . . . . . . . . . . . 416
1. General considerations . . . . . . . . . . . . . . . . . . . . 416
2. Perturbation theory . . . . . . . . . . . . . . . . . . . . . 419
3. Holomorphic families of type (A) . . . . . . . . . . . . . . . 421
4. Holomorphic families of type (B) . . . . . . . . . . . . . . . 422
5. Boundary perturbation . . . . . . . . . . . . . . . . . . . . 423

Chapter Eight
Asymptotic perturbation theory

§ 1. Strong convergence in the generalized sense . . . . . . . . . . . . 427
1. Strong convergence of the resolvent . . . . . . . . . . . . . . 427
2. Generalized strong convergence and spectra . . . . . . . . . . . 431
3. Perturbation of eigenvalues and eigenvectors . . . . . . . . . . 433
4. Stable eigenvalues . . . . . . . . . . . . . . . . . . . . . . 437

§ 2. Asymptotic expansions . . . . . . . . . . . . . . . . . . . . . 441
1. Asymptotic expansion of the resolvent . . . . . . . . . . . . . 441
2. Remarks on asymptotic expansions . . . . . . . . . . . . . . 444
3. Asymptotic expansions of isolated eigenvalues and eigenvectors . . 445
4. Further asymptotic expansions . . . . . . . . . . . . . . . . 448

§ 3. Generalized strong convergence of sectorial operators . . . . . . . . 453
1. Convergence of a sequence of bounded forms . . . . . . . . . . 453
2. Convergence of sectorial forms "from above" . . . . . . . . . . 455
3. Nonincreasing sequences of symmetric forms . . . . . . . . . . 459
4. Convergence from below . . . . . . . . . . . . . . . . . . . 461
5. Spectra of converging operators . . . . . . . . . . . . . . . . 462

§ 4. Asymptotic expansions for sectorial operators . . . . . . . . . . . 463
1. The problem. The zeroth approximation for the resolvent . . . . . 463
2. The 1/2-order approximation for the resolvent . . . . . . . . . 465
3. The first and higher order approximations for the resolvent . . . . 466
4. Asymptotic expansions for eigenvalues and eigenvectors . . . . . 470

§ 5. Spectral concentration . . . . . . . . . . . . . . . . . . . . . 473
1. Unstable eigenvalues . . . . . . . . . . . . . . . . . . . . . 473
2. Spectral concentration . . . . . . . . . . . . . . . . . . . . 474
3. Pseudo-eigenvectors and spectral concentration . . . . . . . . . 475
4. Asymptotic expansions . . . . . . . . . . . . . . . . . . . . 476

Chapter Nine
Perturbation theory for semigroups of operators

§ 1. One-parameter semigroups and groups of operators . . . . . . . . . 479
1. The problem . . . . . . . . . . . . . . . . . . . . . . . . 479
2. Definition of the exponential function . . . . . . . . . . . . . 480
3. Properties of the exponential function . . . . . . . . . . . . . 482
4. Bounded and quasi-bounded semigroups . . . . . . . . . . . . 486
5. Solution of the inhomogeneous differential equation . . . . . . . 488
6. Holomorphic semigroups . . . . . . . . . . . . . . . . . . . 489
7. The inhomogeneous differential equation for a holomorphic semigroup 493
8. Applications to the heat and Schrodinger equations . . . . . . . 495

§ 2. Perturbation of semigroups . . . . . . . . . . . . . . . . . . . 497
1. Analytic perturbation of quasi-bounded semigroups . . . . . . . 497
2. Analytic perturbation of holomorphic semigroups . . . . . . . . 499
3. Perturbation of contraction semigroups . . . . . . . . . . . . 501
4. Convergence of quasi-bounded semigroups in a restricted sense . . . 502
5. Strong convergence of quasi-bounded semigroups . . . . . . . . 503
6. Asymptotic perturbation of semigroups . . . . . . . . . . . . 506

§ 3. Approximation by discrete semigroups . . . . . . . . . . . . . . 509
1. Discrete semigroups . . . . . . . . . . . . . . . . . . . . 509
2. Approximation of a continuous semigroup by discrete semigroups . 511
3. Approximation theorems . . . . . . . . . . . . . . . . . . . 513
4. Variation of the space . . . . . . . . . . . . . . . . . . . . 514

Chapter Ten
Perturbation of continuous spectra and unitary equivalence

§ 1. The continuous spectrum of a selfadjoint operator . . . . . . . . . 516
1. The point and continuous spectra . . . . . . . . . . . . . . . 516
2. The absolutely continuous and singular spectra . . . . . . . . . 518
3. The trace class . . . . . . . . . . . . . . . . . . . . . . . 521
4. The trace and determinant . . . . . . . . . . . . . . . . . . 523

§ 2. Perturbation of continuous spectra . . . . . . . . . . . . . . . . 525
1. A theorem of Weyl-von Neumann . . . . . . . . . . . . . . 525
2. A generalization . . . . . . . . . . . . . . . . . . . . . . . 527

§ 3. Wave operators and the stability of absolutely continuous spectra . . . 529
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 529
2. Generalized wave operators . . . . . . . . . . . . . . . . . . 531
3. A sufficient condition for the existence of the wave operator . . . 535
4. An application to potential scattering . . . . . . . . . . . . . 536

§ 4. Existence and completeness of wave operators . . . . . . . . . . . 537
1. Perturbations of rank one (special case) . . . . . . . . . . . . 537
2. Perturbations of rank one (general case) . . . . . . . . . . . . 540
3. Perturbations of the trace class . . . . . . . . . . . . . . . . 542
4. Wave operators for functions of operators . . . . . . . . . . . 545
5. Strengthening of the existence theorems . . . . . . . . . . . . 549
6. Dependence of W± (H2, H1) on H1 and H2 . . . . . . . . . . . . 553

§ 5. A stationary method . . . . . . . . . . . . . . . . . . . . . . 553
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 553
2. The r operations . . . . . . . . . . . . . . . . . . . . . . 555
3. Equivalence with the time-dependent theory . . . . . . . . . . 557
4. The r operations on degenerate operators . . . . . . . . . . . 558
5. Solution of the integral equation for rank A = I . . . . . . . . 560
6. Solution of the integral equation for a degenerate A . . . . . . . 563
7. Application to differential operators . . . . . . . . . . . . . . 565

Supplementary Notes
Chapter I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
Chapter II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
Chapter III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
Chapter V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
Chapter VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Chapter VII . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
Chapter VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
Chapter IX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
Chapter X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
Books and monographs . . . . . . . . . . . . . . . . . . . . . 593
Supplementary Bibliography . . . . . . . . . . . . . . . . . . . . 596
Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Notation index . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
Author index . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
Subject index . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
TItlePerturbation Theory for Linear Operators
AuthorTosio Kato
PublisherSpringer Verlag
Price
Size
ISBN
NDC

Welcome to Marinkyo's School! > Books about mathmatics > Tosio Kato : Perturbation Theory for Linear Operators


MARUYAMA Satosi