大学入試に出題された「折り紙」問題

よしたはじめ
（千葉県・河合塾 COSMO コース講師）

関東地区数学教育協議会 結成50周年記念研究大会 ポスター展
2009年11月21、22日 つくば市・つくば国際会議場

【問題】
封筒の中の折り紙を一边の長さが2の正方形と見なそう。これらのうち、
2枚は提出用、残りは練習用である。折り方を評価するので、提出用には
途中経過の折り目をはっきり残し、不要な折り目が消えきらなければ
ならないようにすること。（折り紙が足らなくなったときは試験官に申し出る
こと。）

（1）一边の長さ2の正方形を折って、√2, √3, √5の各々の長さの線分
を作りたい。各々について、折る手順を述べ、それらを1枚の折り紙
の上で実行せよ。

【注意】各長さについて、できた線分を鉛筆でなぞり、そばに長さを
明記すること。

（2）折り紙（頂点をA,B,C,Dとする）を折って正五角形を作りたい。辺AB
上に一辺を持つ正五角形のうちで最大のものの折り方を述べ、その折り
方を折り紙の上で実行せよ。

【注意】できた正五角形の4辺を鉛筆でなぞること。

（3）正方形に含まれる正五角形のうちで、上ののような「その五角形の一辺
に含まれるもの」よりも大きなものがあるか否か考察せよ。

【愛知教育大学・数学科・1999年度後期】
【コメント】
問題文が大学入試の文体で書かれているので、難しく思えるかもしれませんが、数学の内容としては中学3年終了程度です。
(2)に答えるには、正五角形の1辺と対角線の長さの比が必要です。これは知っていなくても、図を描けば求めることができます。そして、この折り方には(1)の解が関係してきます。

「正五角形の折り紙を作って何になるの？」
はい、使い道はありませんよ。

写真1 正方で作った4枚花びらの花（左）と正五角形で作った5枚花びらの花（右）
解答例とコメント

(1) 【解答例】

E, F, G, H は折り紙の各辺の中点。
EF = \sqrt{2}, AF = \sqrt{5}.
AB の垂直二等分線上に B がくるように, A を中心に AB を折り返す.
このとき, B と重なる点を I とすると, EI = \sqrt{3}.

【コメント】\sqrt{2} は折り紙の対角線を折ってその半分, つまり頂点と
中心を結ぶ線分でもよいのですか, 生徒の解は図のような隣り合う辺の
中点を結ぶ線分が主流のようです.
(2) 【方針】折り紙の辺AB上に一辺を持つ最大の正五角形は、対角線のひとつの辺ABと平行で、折り紙の辺の一辺の長さと等しい。つまり、正五角形の対角線の長さは2で、この正五角形の一辺の長さxを求めます。

図のように正五角形ができました。その正五角形の対角線KJとLHの交点をM、KJとLIの交点をNとすると、KJ = LI = LH = 2、IH = KM = NJ = NI = xです。
△LHI ∼ △LMNだから、LI : IH = LN : NM。
すなわち、2 : x = (2 - x) : (2x - 2)。
これより、x² + 2x - 4 = 0 (x > 0)。
これを解いて、x = √5 - 1となります。

したがって、折り紙の辺の中央に√5 - 1の線分を作り、その長さを1辺とする正五角形を作っていけばよいのです。

なお、正五角形の1辺と対角線の比が 1 : \(\frac{\sqrt{5} + 1}{2} \) （黄金比）であることを知っていれば、1 : \(\frac{\sqrt{5} + 1}{2} \) = x : 2 より、x = √5 - 1が求められます。

【参考】定規とコンパスで正五角形を作図する一般的な方法では、1辺の長さ1に対して、対角線の長さ \(\frac{\sqrt{5} + 1}{2} \) を作図しています。
【解答例】

【手順】

(a) $\sqrt{5} - 1$ の長さの線分をつくる。

 (i) A と BC の中点 E を結ぶ線分を折る. $AE = \sqrt{5}$.

 (ii) EB を AE に重なるように折り返し, AE 上で B が重なる点を
 F とする. $EB = 1$ なので, $AF = \sqrt{5} - 1$.

(b) $\sqrt{5} - 1$ の長さを辺 AB の中央に移す.

 (i) AB を AE に重なるように折り返し, AB 上の F が重なる点を
 G とする. $AG = \sqrt{5} - 1$.

 (ii) GB の中点を H とする. AB 上に AI = HB となる点 I をとる.

 IH は AB の中央にあり, $IH = \sqrt{5} - 1$.

(c) 正五角形の残りの3頂点を決める.

 (i) H を中心に HI を折り返し, BC 上で I が重なる点を J とする.

 $IH = HJ = \sqrt{5} - 1$.

 左側も同様にして, $IH = IK = \sqrt{5} - 1$.

 (ii) J を中心に JH を折り返し, AB の垂直二等分線上で H が重なる

 点を L とする. $IH = HJ = JL = \sqrt{5} - 1$.

 左右対称だから, $KL = JL = \sqrt{5} - 1$.

以上で, 正五角形 IHJLK ができる.
(3) 【解答例】
AD ⊥ KJ であり、L は折り紙内部の点だから、正五角形 IHJK を、K を中心としてほんのわずか左に回転すると、残りの 4 つの頂点 I, H, J, L が折り紙の内部（辺上ではなく）にあるようにすることができる。このとき、正五角形の各辺は K を中心として折り紙上で拡大できる余地がある。

【コメント】問いは「最大のものを求めよ」ではないので、この程度でよいと思います。
K をちょっと下にずらせば、さらに大きくできます。

なお、(1), (2) については、数学教育協議会では 1970 年代から知られている方法です。

【参考文献】
1. 堀井洋子『折り紙と数学』明治図書 1977(絶版)

次は別の方法についても考察しています。
2. 芳賀和夫『オリガミクス (1) 幾何図形折り紙』日本評論社 1999